DOMINATOR CHROMATIC NUMBER OF SOME GRAPHS

S.M. Meena Rani

Associate Professor of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar

R.B. Gnana Jothi

M.Phil. Coordinator of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar

K.Chithra

M.Phil. Scholar, V.V. Vanniaperumal College for Women, Virudhunagar

Abstract: A dominator colouring of a graph G is a proper colouring of G in which each vertex dominates every vertex of at least one colour class. The dominator chromatic numbers have been determined for many families of graphs like Cycle , Path , Star graph , Prime graph, Wheel graph etc . In this paper the dominator chromatic number of Complete binary trees, Book graphs and Triangular snakes have been determined .

Keywords: Dominator colouring , Dominator chromatic number, Complete binary tree, Book graphs, Triangular Snakes.

1. Introduction: Graph colouring and domination are two important branches of Graph Theory . Colouring vertices and edges of a graph is an easy job but when the number of colours is restricted it becomes a tough task . Similar problem is there for domination. A dominator colouring of a graph G is a proper colouring of G in which each vertex dominates every vertex of at least one colour class. The dominator chromatic number χ d(G) is the minimum number of colors required for a dominator coloring of G [2]. The concept of dominator colourings was introduced by Gera, R.S Horton. and C. Rasmusssen, in 2006 [1].

Determining dominator chromatic number of a graph is a difficult problem. It seems to be challenging while dealing with families of graphs. Many researchers have made attempt in this line. Till now dominator chromatic numbers have been determined for nearly 35 families of graphs. This paper adds four more families to this collection.

2. Complete Binary Tree

Definition: [4]: A Complete binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth (or) same level.

2.1 Theorem: Let B_K be the complete binary tree with k levels with K > A. Then

$$\chi_{d}(B_{k}) = \begin{cases} \frac{4}{7} [8^{l} - 1] + 3, & \text{if } k = 3l \\ \frac{1}{7} [8^{l+1} - 1] + 2, & \text{if } k = 3l + 1 \\ \frac{2}{7} [8^{l+1} - 1] + 2, & \text{if } k = 3l + 2 \end{cases}$$

Proof: Let $V(B_k) = \bigcup_{i=0}^k V_i$, where $V_i = \{v_i^1, v_i^2, ..., v_i^{2^i}\}$, i = 0, 1, 2, ..., k and edge set $E(B_k) = \bigcup_{i=0}^k E_i$, where $E_i = \{v_i^1 v_{i+1}^1, v_i^1 v_{i+1}^2, v_i^2 v_{i+1}^2, v_i^2 v_{i+1}^2, ..., v_i^{2^i} v_{i+1}^2, ..., v_i^2 v_{i+1}^2, ..., v_i^2 v_{i+1}^2\}$. The vertices of V_i form the i th level of B_k . $|V(B_k)| = 2^k \cdot 2^{k+1}$

$$|V(B_k)| = 2^k + 2^{k-1} + \dots + 2 + = \frac{2^{k+1}-1}{2-1} = 2^{k+1} - 1$$

 $\Delta(B_k) = 3$

Therefore, $\gamma(B_k) \ge \frac{1}{4} |V(B_k)| = \frac{1}{4} [2^{k+1} - 1]$

Case 1: Let k = 3l

Let $S = V_{K-1} \cup V_{K-1} \cup \dots, \cup V_5 \cup V_2 \cup V_0$ $|S| = 2^{3l-1} + 2^{3l-4} + \dots + 2^5 + 2^2 + 2^0 = 2^2 [2^{3l-3} + 2^{3l-6} + 2^3 + 1] + 1$

$$|S| = 2^{2} [8^{l-1} + 8^{l-2} + ... + 8 + 1] + 1 = 2^{2} [\frac{8^{l} - 1}{8 - 1}] + 1$$

 $|S| = \frac{4}{7} [8^l - 1] + 1$

S is a minimal dominating set

Therefore, $\gamma(B_k) = \frac{4}{7} [8^{l-1}] + 1$

Assign separate colours to each vertex in minimal dominating set S. This needs γ colours.

Assign($\gamma+1$)th colours to the vertices in the levels k, k-3, k-6,..., 3

Assign $(\gamma+2)^{th}$ colours to the vertices in the levels k-2, k-5,....,4,1

This colouring is a dominator colouring

 $\gamma(B_{3l})+1 \le \chi_d(B_{3l}) \le \gamma(B_{3l})+2$, since B_{3l} is a tree.

S is an independent dominating set.

No two vertices of S can be in the same colour class of any dominator colouring .(suppose x,y ϵ S and x,y ϵ V_i for some i, $1 \le I \le \gamma$. Then x does not dominate any colour class)

 $B_{3l}\backslash S$ is not independent and $\chi(B_{3l}\backslash S)\geq 2$

Hence $\chi_d(B_{3l}) = \gamma + 2 = \frac{4}{7} [8^l - 1] + 3$

Case 2: Let K = 3l + 1

Let $S=V_{K-1}\cup V_{K-3}\cup....\cup V_1\cup V_3\cup V_o$

$$|S| = \frac{8^{l+1}-1}{8-1}; |S| = \frac{1}{7} [8^{l+1} - 1],$$

S is a minimal dominating set, Therefore, $\gamma(B_k) = \frac{1}{7} [8^{l+1} - 1]$

Assign separate colours to each vertex in minimal dominating set S. This needs γ colours.

Assign $(\gamma+1)^{th}$ colours to the vertices in the levels k-2,k-4,...,1

Assign $(\gamma+2)^{th}$ colours to the vertices in the levels k,k-5,...,2

This colouring is a dominator colouring. $\chi_d(B_{3l+1}) = \gamma(B_{3l+1}) + 2 = \frac{1}{7} [8^{l+1} - 1] + 2$.

Case 3: Let k=3l+2

Let $S=V_{K-1}\cup V_{K-3}\cup....\cup V_4\cup V_1$

 $|S| = 2^{3l+1} + 2^{3l-2} + 2^{3l-5} + ... + 2^4 + 2 = |S| = \frac{2}{7} [8^{l+1} - 1]$, S is a minimal dominating set.

Therefore, $\gamma(B_k) = \frac{2}{7} [8^{l+1} - 1]$

Assign separate colours to each vertex in minimal dominating set S. This needs γ colours.

Assign $(\gamma+1)^{th}$ colours to the vertices in the levels k-1,k-4,...,3

Assign $(\gamma+2)^{th}$ colours to the vertices in the levels k-2,k-5,...,4,1

This colouring is a dominator colouring. $\chi_d(B_{3l+2}) = \gamma(B_{3l+2}) + 2 = \frac{2}{7} [8^{l+1} - 1] + 2$

3. Book Graphs:

Definition: [3]: R_k,Book with k rectangular pages is the graph with

$$V(R_k) = \{u_1, u_2, v_i^1, v_i^2 : 1 \le i \le k\} \text{ and } E(R_k) = \{u_1 u_2\} \cup \{u_1 v_1^1 : 1 \le i \le k\} \cup \{u_2 v_1^2 : 1 \le i \le k\}$$

Definition: [3]: T_k the book with k triangular pages is defined as the graph with vertex set $V(T_k)=\{u_1,u_2,v_1,v_2,...;v_k\}$ and edge set $E(T_k)=\{u_1u_2,u_1v_1,u_2v_1,...,1\leq i\leq k\}$

Theorem: 3.1: $\chi_d(R_k) = 4$ for k > 1 and $\chi_d(R_1) = 2$

Proof: It is easy to check that , $\chi_d(R_1) = 2$

Let, k>1 $\chi_d(R_k) \ge \chi(k) \ge 2$

If possible, let $\chi_d(R_k) = 2$

Let (V_1, V_2) be a dominator colouring

W.l.o.g ,let $u_i \in V_i$ and $u_2 \in V_2$

 v_1^1 is not adjacent to u_2 . v_1^1 does not dominate V_2 .

Therefore, v_1^1 dominates V_1 .

Hence, $V_1 = \{u_1, v_1^2\}$. V_2 contains v_2^1 and v_2^2

 $\Rightarrow \Leftarrow$

Therefore, $\chi_d(R_k) > 2$. If possible, $\chi_d(R_k) = 3$

Let (V₁,V₂,V₃) be a dominator colouring

W.l.o.g , let $u_{\scriptscriptstyle 1}\varepsilon~V_{\scriptscriptstyle 1}$ and $u_{\scriptscriptstyle 2}\varepsilon~V_{\scriptscriptstyle 2}$

 v_1^1 is not adjacent to $u_2.v_1^1$ does not dominate V_2 . So, v_1^1 dominates either V_1 (or) V_3

Case1: Suppose that v_1^1 dominates V_1

Then, $V_1 = \{u_1, v_1^2\}$. $v_1^1 \in V_2$ (or) $v \in V_3$

Sub case:(i) Let $v_1^1 \in V_2$

 v_2^1 is not adjacent to v_1^2

Therefore, v_1^1 does not dominate either V_1 (or) V_2 . v_2^1 should dominates V_3 . Hence $V_3 = \{v_2^1\}$ (or) $V_3 = \{v_2^2\}$. If $V_3 = \{v_2^1\}$ then $V_2 = \{u_2, v_2^2\}$

Which is a contradiction.(Since u_2 is adjacent to v_2^2)

If $V_3 = \{v_2^2\}$ then V_2 contains $u_2, v_1^1, v_2^1, ..., v_1^2$ does not dominate any colour class

 $\Rightarrow \leftarrow$

Sub Case: 2 Let $v_1^1 \in V_3$

 $V_1 = \{ u_1, v_1^2 \}$, $u_2 \in V_2$ (or) $v_1^1 \in V_3$. v_2^1 is not adjacent to v_1^2 , u_2 and v_1^1 .

Therefore, v_2^1 does not dominate any colour class.

 $\Rightarrow \leftarrow$

Case: 2 Suppose v_1^1 dominates V_3

Then $V_3 = \{v_1^1\}$ and $V_1 = \{u_1, v_2^2\}$ and $V_2 = \{u_2, v_2^1, v_1^2\}$

 v_2^2 does not dominate any colour class. so, it is not a dominator colouring.

Hence $\chi_d(R_k) > 3$

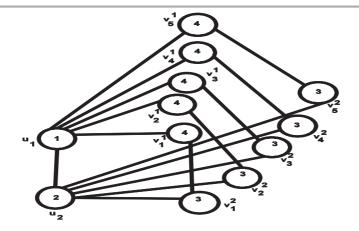
Describe a 4-colouring of B_k as follows,

 $V_2 = \{ u_1 \}$, $V_2 = \{ u_2 \}$, $V_3 = \{ v_1^1, v_2^1, \dots, v_k^1 \}$, $V_4 = \{ v_1^2, v_2^2, \dots, v_k^2 \}$

 u_1 dominates V_2 , u_2 dominates V_2 , v_i^1 dominates V_1 for $1 \le i \le k$, v_i^2 dominates V_2 for $1 \le i \le k$

Therefore, (V_1, V_2, V_3, V_4) is a dominator colouring.

Hence, $\chi_d(R_k) = 4$.



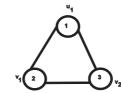
3.2 Theorem: χ_d $(T_k) = 3$ for $k \ge 1$ **Proof:** T_k contains triangle. Hence χ_d $(T_k) \ge \chi$ $(T_k) = 3$ consider the 3-colouring given below, $V_1 = \{u_1\}, \ V_2 = \{u_2\}, \ V_3 = \{\ v_1\ v_2,...,v_k\}$ It is a proper 3-colouring. u_1 dominates V_1 , u_2 dominates V_2 v_1 dominates V_2 The colouring given above is a dominator colouring. Therefore, χ_d $(T_k) = 3$

4. Triangular Snakes

Definition: [5]: T_k , the triangular snakes with k triangular pages be defined as the graph with vertex set $V(T_k)=\{u_i,u_2,...,u_k,v_1,v_2,...,v_k,v_{k+1}\}$ and edge set $E(T_k)=\{v_iv_{i+1}:1 \leq i \leq k\} \cup \{u_iv_i, u_iv_{i+1}, 1 \leq i \leq k\}$.

4.1 Theorem: χ_d (Tk) = $\begin{cases} 3 & \text{for } k = 1,2 \\ 4 & \text{for } k = 3,4 \end{cases}$

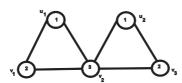
Proof: Case 1: k=1



3-dominator colouring of T₁

 χ_d $(T_1) \ge \chi$ $(T_1) = 3$ and the figure gives a dominator colouring with 3 colours. Therefore χ_d $(T_1) = 3$

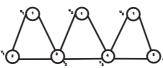
Case **2:** Let k=2



3-dominator colouring of T2

 $\chi_{d}\left(T_{z}\right)\geq\chi\left(T_{z}\right)=3\text{ .The figure depicts a 3-dominator colouring of }T_{z}\text{. Therefore }\chi_{d}\left(T_{z}\right)=3$

Case3: Let k=3



4-dominator colouring of T₃

T₃ contains triangle. At least 3 colors are needed to colour the vertices of T₃.

Therefore $\chi(T_3) \ge 3$ and $\chi_d(T_3) \ge 3$

If possible ,let (V_1, V_2, V_3) be a dominator colouring of T_3

No two of u_1 , v_1 , v_2 can be in the same colour.

W.l.o.g, let $u_1 \in V_1$, $v_1 \in V_2$, $v_2 \in V_3$

u₃ is not adjacent to u₁ and , v₁ and , v₂

Therefore, u₃ does not dominates any colour class.

Which is a contradiction

Therefore, $\chi_d(T_3) \ge 3$

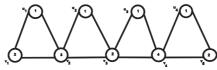
Describe a 4-coloring for T₃ as follows,

 $V_1 = \{ u_1, u_2, u_3 \}, V_2 = \{ v_1 \}, V_3 = \{ v_2, v_3 \}, V_4 = \{ v_3 \}$

clearly, it is a dominator coloring

Therefore, $\chi_d(T_3) = 4$.

Let k = 4Case 4:



4-dominator colouring of T₄

 T_4 contains triangle. At least 3 colors are needed to colour the vertices of T_4 properly.

Therefore $\chi_d(T_4) \ge 3$

If possible ,let (V_1, V_2, V_3) be a dominator colouring of T_4

No two of u_1 , v_1 , v_2 can be in the same colour.

W.l.o.g, let $u_1 \in V_1$, $v_1 \in V_2$, $v_2 \in V_3$

u₃ is not adjacent to u₁ and v₁ and v₂

Therefore, u₃ does not dominates any colour class.

Which is a contradiction

Therefore, $\chi_d(T_4) \geq 3$

Describe a 4-coloring for T₄ as follows,

 $V_1 = \{ u_1, u_2, u_3, u_4, \}, V_2 = \{ v_1, v_3, v_5 \}, V_3 = \{ v_2 \}, V_4 = \{ v_4 \}$

clearly, it is a dominator coloring

Therefore, $\chi_d(T_4) = 4$.

4.2 Theorem: $\gamma\left(T_{K}\right) = \left\lfloor\frac{K+1}{2}\right\rfloor$ for $1 \le k \le 6$, k=8, k=10 and k=14 **Proof:** $\gamma\left(T_{K}\right) \ge \frac{|V(Tk)|}{1+\Delta(Tk)}$ $\gamma\left(T_{K}\right) \ge \left\lceil\frac{2k+1}{1+4}\right\rceil = \left\lceil\frac{2k+1}{5}\right\rceil$

$$\gamma\left(T_{K}\right) \geq \left[\frac{2k+1}{1+4}\right] = \left[\frac{2k+1}{5}\right]$$

Let $S = \{ v_2, v_4, ..., v_{k+1} \}$ if k is odd and $S = \{ v_2, v_4, ..., v_k \}$ if k is even.

In both cases, $|S| = \left\lfloor \frac{K+1}{2} \right\rfloor$ and S is a dominating set of T_K

Hence S is a minimum dominating set of $T_K = |S| = \left| \frac{K+1}{2} \right|$

 $\left[\frac{2k+1}{5}\right] = \left|\frac{K+1}{2}\right|$ for $1 \le k \le 6$, k=8, k=10 and k=14

 $\chi_{\rm d}\left({\rm T_k}\right) \le \left\lfloor \frac{K+1}{2} \right\rfloor$ 4.3 Theorem:

Proof: Contruct a $\left\lfloor \frac{K+1}{2} \right\rfloor$ colouring of T_k as follows

Let $V_i = \{ v_{2i} \}$ for $i=1,2,..., \left| \frac{K+1}{2} \right|$

Assign colour $\left\lfloor \frac{K+1}{2} \right\rfloor + 1$ to $u_1, u_2, u_3, ..., u_k$ and colour $\left\lfloor \frac{K+1}{2} \right\rfloor + 2$ to $v_1, v_3, v_5, ...$

(i.e) $V_{|\frac{K+1}{2}|+1} = \{ u_1, u_2, u_3, u_k \}$ and

$$V_{\left\lfloor \frac{K+1}{2} \right\rfloor + 2} = \begin{cases} \{v_1, v_3, v_5, \dots, v_k \}, & \text{if } k \text{ is odd} \\ \{v_1, v_2, \dots, v_{k+1} \}, & \text{if } k \text{ is even} \end{cases}$$
 Clearly, it is a dominator colouring of T_k. Hence, $\chi_d(T_k) \leq \left\lfloor \frac{K+1}{2} \right\rfloor$

References:

- 1. Gera,R.,S Horton.C.,Rasmusssen, "Dominator colouring and safe clique partition," Congressus Numerantium 181,19-32(2006).
- 2. Arumugam .S, Jay Bagga and Raja Chandrasekar, K, "On dominator colorings in graphs," Proc. Indian Acad Sci.(Math. Sci.), Vol. 122, no. 4, pp, 561-571, 2012.
- 3. Mathworld .wolfram.com by EW.Weisdtein-2007.
- 4. https://en.m.Wikipedia.org/Wiki/Binary.
- 5. Franklin Thamil Selvi, "Harmonious colouring of central graphs of certain snake graphs", Applied Mathematical Sceince, Vol. 9, 2015, no. 12, 569-578.
