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Abstract: We examine the effects of porous impedance on laminarmagnetohydrodynamic free convection heat 
transfer of an electrically-conducting, Newtonian,Boussinesq fluid from a vertical stretching surface in a non-
Darcian porous medium under the influence of uniform transverse magnetic field.The flow is considered over a 
stretching sheet in the presence of viscous dissipation and internal heat generation.The well-known 
Boussinesq approximation has been used to represent the buoyancy term adding to the governing equation.By 
applying two equal and opposing forces along the x-axis, the sheet is stretched with a speed proportional to the 

distance from the fixed origin 0x . Similarity transformations are used to reduce the governing boundary 
layer equations to coupled higher order non-linear ordinary differential equations.These equations were 
numerically solved using implicit finite difference scheme known as Keller box method. The computed results 
are compared with the previously reported work and have good agreement with earlier studies.The effects of 
various physical parameters like Porousparameter,Prandtl number, Hartmann number, Grashoffnumber, 
inertia coefficient, and internal heat generation on flow, and heat  transfercharacteristics are reported 
graphically in detail. Applications of the study include magnetic materials processing and chemical 
engineering systems. 
Keywords: Non-Darciansaturated porous medium, Keller box method, Prandtlnumber, free  
convection, MHD 

 
Introduction: Aerodynamic extrusion of plastic 
sheets, glass fiber production, paper production, heat 
treated materials travelling between a feed roll and a 
wind-up roll, cooling of an infinite metallic plate in a 
cooling bath, manufacturing of polymeric sheets are 
some examples for practical applications of boundary 
layer fluid flow over a stretching surface. For the 
production of fiber sheet/plastic sheet, extrusion of 
molten polymers through a slit die is an important 
process in polymer industry. This thermo-fluid 
problem involves significant heat transfer between 
the sheet and the surrounding fluid. In this process 
the extrudate starts to solidify as soon as it exits from 
the die and then the sheet is collected by a wind-up 
roll upon solidification. The quality of the final 
product depends on the rate of heat transfer and the 
stretching rate.This stretching may not necessarily be 
linear. It may be quadratic, power-law, exponential 
and so on.The inertia effect is assumed to be 
important at higher flow rate and it can be accounted 
for through the addition of a velocity-squared term in 
the momentum equation, which is known as the 
Forchheimer extension. The Brinkman extension is 
usually used to shed light on the importance of 
boundary effects. Especially in heat transfer problems 
the variation of density with temperature give rise to 
a buoyancy force under natural convection. 
After the pioneering work of Sakiadis(1961a, 1961b), 
many researchers gave attention to study flow and 
heat transfer of Newtonian and non-Newtonian fluids 
over a linear stretching sheet. By considering 

quadratic stretching sheet, Kumaran and Ramanaiah 
(1996)analyzed the problem of heat transfer. Ali 
(1995) investigated the thermal boundary layer flow 
on a power law stretching surface with suction or 
injection. 
Elbashbeshy(2001)analyzed the problem of heat 
transfer over an exponentially stretching sheet with 
suction. Magyari and Keller (1999) discussed the heat 
and mass transfer in boundary layers on an 
exponentially stretching continuous surface.Khan 
and Sanjayanand (2005) and Sanjayanand and Khan 
(2006) extended the work of Elbashbeshy(2001) to 
viscoelastic fluid flow, heat and mass transfer over an 
exponentially stretching sheet.Raptis et al. (1981) 
constructed similarity solutions for boundary layer 
near a vertical surface in a porous medium with 
constant temperature and concentration.Bejan and 
Khair(1985)used Darcy’s law to study the features of 
natural convection boundary layer flow driven by 
temperature and concentration  gradients.   
Forchheimer (1901) proposed quadratic term in 
Darcian velocity to describe the inertia effect in a 
porous medium. Plumb and Huenefeld(1981) studied 
the problem of non-Darcian free convection over a 
vertical isothermal flat plate. Rees and Pop(1994) also 
studied the free convection flow along a vertical wavy 
surface with constant wall temperature. Rees and 
Pop(1995) studied the case where the heated surface 
displays waves while the Darcylaw is supplemented 
by the Forchheimerterms.They stated that the 
boundary flow remains self similar in the presence of 
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surface waves wherethe inertia is absent,and when 
the inertia is present the surface waves are 
absent.However,the combination of the two effects 
yields non-similarity.Tsou et al.(1967) studied flow 
and heat transfer in the boundary layer on a 
continuous moving surface, while Gupta and 
Gupta(1977) solved boundary layer flow with suction 
and injection.Andersson and Bech(1992) have studied 
the MHD flow of the power law fluid over stretching 
sheet.Pavlov(1974) gave an exact similarity solution to 
the MHD boundary layer equation for the steady and 
two dimensional flow caused solely by the stretching 
of an elastic surface in the presence of uniform 
magnetic field.Abel and Mahesha(2008) 
Motivated by the above-mentioned studies, it is 
noticed that the effect of non-Darcian boundary layer 
flow was not studied so far for exponentially 
stretching sheet.Therefore, thispaper can be used as a 
bridge to fill the knowledge gap. It is an extension of 
the work of Pal(2010) through the introduction of an 
additional parameter,i.e., the drag coefficient 
parameter.This study has applications in the effect of 
solid boundary and inertial forces on flow and heat 
transfer in porous media. Thegoverning boundary-
value problem has been numerically solved using an 
implicit finite difference scheme known as the Keller 
box method. From the above-cited literature, we can 
realize that the Keller box method has not been 
widely used.  The results obtained from the present 
investigation will provide useful information for 
application and also serve as a complement to the 
previous studies. 

 
Mathematical Formulation: Consider a steady 
laminar two dimensional boundary layer flow and 
heat transfer over an exponentially stretching sheet in 
an electrically conducting quiescent fluid coinciding 

with the plane 0y , the flow being confined to 

0y . The x–axis runs along the stretching sheet 

and y–axis perpendicular to it.Auniform magnetic 

field of strength 0B is assumed to be applied in the y–

direction.It is assumed that the induced magnetic 
field of the flow is negligible incomparison with the 
applied one which corresponds to a very small 
magnetic Reynolds number.The 
continuity,momentum and energy equations can be 
written as  
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The associated boundary conditions to the problem 
are  
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0,   as , "(5)",u T T y    

(5) 
where u and v are the x and ycomponents of the 
velocity field of the steady plane boundary flow, 
respectively, denotes the kinematic viscosity,k is the 
permeability of the porous medium,  is the thermal 
diffusivity of the ambient fluid,  is the electrical 

conductivity, and 0B is the magnetic field flux 

density. The fluid flow is under the effect of the 

temperature field, where T is the temperature of the 

ambient fluid,Q is internal heat 

generation/absorption coefficient, and bC is the drag 

coefficient. The stretching velocity wU  and  

exponential temperature distribution wT  are defined as follows: 
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where 0T  and a are parameters of temperature distribution over the stretching surface. 

Further, we look for a similarity transformation of equations(1) to(3) by introducing the following similarity 
transformation: 
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where  is the stream function which is defined in the usual form as 
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Thus substituting Eqs.(8) and (9) into Eq. (10),we obtain u and v as follows: 
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Equations (1) to(5) are transformed into nonlinear 
ordinary differential equations, with the aid of Eqs. 
(8)–(12).Thus, the governing equations takes the form 

2

2

2
22

1

2

Ha
2Gr 2 0 "(13)",

Re

ax

x x

f ff N f

e e e f N
(12) 

(2 )

1 2

2
2 2

Pr

Ha
Ec 2 2 0 "(14)",

Re

X a

X X

f af e

f f e e

   
(13)  
Further the boundary conditions,Eqs. (4) and (5) 
reduces to the form, 
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where / ,X x L
1

2 2 2
0Ha /B L  is the 

Hartmann number,
2

0 0Ec / ( )pU c T T  is the 

Eckert number,
2 /( Re)pQL c is the 

dimensionless heat generation/absorption parameter,
3 2

1 0
Gr ( ) /g T T L  is the Grashof number,

0Re /U L  is the Reynolds number,

2

1
Gr Gr / Re is the thermal buoyancy parameter,

Pr /  is the Prandtlnumber,
2

1 / ReN L k is 

the porous parameter, and 2 2 /bN C L k is the 

inertia coefficient.In the above system of local 
similarity equations,the effect of the magnetic field is 
included as a ratio of the Hartman number to the 
Reynolds number. 
The physical quantities of interest in the problem are 

the local skin friction acting on the surface in contact 
with the ambient fluid of constant density, which is 
defined as follows: 
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and the non-dimensional skin friction coefficient,
f

C

, can be written as 
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The local surface heat flux through the wall withk as 
the thermal conductivity of the fluid is given by 
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The local Nusselt number,
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where Rex  is the local Reynolds number based on the 

surface velocity and is given by 
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Re w

x
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v
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3.Numerical Solution: The system of transformed 
equations(13) and (14) together with the boundary 
conditions, have been solved numerically using the 
Keller box scheme, an efficient and accurate finite-
difference scheme, as has beendescribed in Cebeci 
andBradshaw (1984).We first convertthe second- and 
third-order differential equations, (13)-(14)into five 
first-order differential equations. Then we apply the 
finite difference scheme, which is described briefly as 
mentioned below. 
The governing equations of the problem are given by 
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In this method, the second-and third-ordernonlinear 
differentialequations(13) and (14) have been reduced 
to five first order, ordinary differential equations as 
follows: 
Let us define 
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Then applying finite difference scheme  
Results and Discussion: A comparison of results for 

Ha=Gr=Ec= =0, as obtained by(i) Magyari and 
Keller (1999); (ii)Al-Odat et al.(2006); (iii) Pal and 
Mondal (2012); and (iv) the present method, isshown 
inTable 1. It is noticed that the present results are in 
close agreement with the published ones. 
Fig. 2 shows the effect of the magnetic field 

parameter
2Ha / Re  on the horizontal velocity 

profile f .The increasing frictional drag due to the 

fact that applied transverse magnetic field produces a 
drag in the form of Lorentz force which results in 
decreasing the magnitude of velocity and thereby 
increase the temperature in the thermal boundary 
layer, which is the main cause for increasing the 
thermal boundary layer thickness. 
Fig. 3 shows the variation of dimensionless horizontal 

velocity profile f  for various values of a. From this 

figure, it is observed that as the value of a increases 
there is increase in the value of the dimensionless 
horizontal velocity profile. The maximum 
dimensionless horizontalvelocity profile is observed 
when a = 7.  
Fig. 4 depicts the variation ofdimensionless 
horizontalvelocity profilefor different valuesof 
dimensionless coordinateX. From this figure, it is 
noticed that dimensionless horizontal velocity profile 
decreases with increase in the values of Xin the 
boundary layer, but the significant effect is noticed 
for flow adjacent to the stretching sheet. 
Fig. 5 depicts the dimensionless temperature field for 
various values of a, with fixed values of other involved 
parameters.  It is observed from this figure that 
temperature decreases with increase in the values of 
a. Further, it can be seen that the thermal boundary 
layer thickness decreases with increase in a.  An 
interesting feature of this figure is that the heat 
transfer decreases throughout the boundary layer for 
positive values of a, which indicates that, the flow of 
heat transfer is directed from the wall to the ambient 
fluid whereas the rate of heat transfer in the 
boundary layer increases near the wall and decreases 
monotonically for negative values of a. The presence 
of temperature overshoot for negative values of a 
indicates that the maximum value of temperature 
occurs in the ambient fluid close to the surface but 
not overthe surface. 
Fig. 6 depicts the temperature profile in the fluid for 

various values of
2Ha / Re ,for 2a and Gr = 0, 

0.5. It is noticed that an increase in the strength of 
magnetic field i.e., Lorentz force leads to an increase 
in the temperaturefar away from the wall, within the 
thermal boundary layer but the effect of magnetic 
field near the wall is to decrease the temperaturein 
the absence of Grashofnumber. It is also noticed that 
the magnetic field enhances the thermal boundary 
layer thickness.  
Effects of Grashof number on temperature profile for 

the values of 2a  at 0.5X  are depicted in Fig. 
7,and it is noticed that increase in Grashof number 
leads to increase in temperature upto a certain value 
of ,and suddenly decreases and decays 

asymptotically to zero. Further, it is observed that 
this increase in temperature is due to the 
temperature difference between stretched wall and 
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the surrounding fluid. Increase in Gr leads to 
decrease in the boundary layer thickness. 

Fig. 8 depicts the temperature profile ( )  for 

various values of X along for different values of 

1,  2a and alsoGrashofnumber Gr = 1.0. It is 

noticed that the effect of increasing X on ( )  is 

more effective for 2a  than compared to 

theresults obtained in the case when 1a . It is 

interesting to note the behaviour of X on ( )  is 

that the temperature overshoots near the wall for 

small value of X,for 2a , whereas the  overshoot 

diminishes when ais enhanced to 1a  for all 
othervalues of X. It is also observed that the boundary 
layer thickness decreases with an increase in X. 
Fig. 9 depicts the variationof temperature profiles 

( )  for various values of magnetic field parameter (

2Ha / Re  = 0, 6, 8) for two values of X. It is noticed 
that temperature decreases as Xincreases for all other 
fixed values of other involved parameters except 

when the value of parameter 5a . It is also noticed 
that the thermal boundary layer thickness increases 
as X decreases and the effect of magnetic field is to 
increase the temperature for both valuesof X.This is 
due to the fact that magnetic field produces a Lorentz 
force which results in retarding force on the velocity, 
resulting in, increase in the temperature. 
Fig. 10 depicts the effect of the Prandtl number Pr on 

dimensionless heat transfer parameter . It is noticed 
from this figure that as Prandtl number Princreases,

decreases. In heat transfer problems, the Prandtl 
number Pr controls the relative thickening of thermal 
boundary layers. When thePrandtl number Pr is 

small, heat diffuses quickly compared to the velocity 
(momentum), especially for liquid metals,(low 
Prandtl number) the thickness of the thermal 
boundary layer is much bigger than the momentum 
boundary layer. Fluids with lower Prandtl number 
have higher thermal conductivities where heat can 
diffuse from the sheet faster than for higher Prfluids. 
Hence the Prandtl number is a parameter that can 
beadjusted to increase the rate of cooling in 
conducting flows. 

Fig. 11 depicts the effect of porous parameter 1N  over 

velocity profile, and it is  
noticed from this figure that the velocity decreases 
with the increase of porous parameter, which offers 
resistance to the flow resulting in decrease of velocity 
in the boundary layer, which concurs with the results 
of various authors, whose works are concerned with 
porous medium, for instance the results of Pal and 
Mondal (2012). 
Fig. 12 illustrates the effect of drag (inertia) coefficient 

of porous medium 2N in the momentum boundary 

layer. From thisfigure it is noticed that the effect of 
drag coefficient is to decrease the velocity profile in 
the momentum boundary layer, which implies 
thinning of the boundary layer thickness. 
Fig. 13depicts the effect of heat source/sink parameter

.It is observed that the boundary layer 
generatesthe energy, which causes the temperature 

profiles to increase, with increasing values of 0  

(heat source) whereas in the case of 0  
(absorption) boundary layer absorbs energy resulting 
in the temperature to fall considerably with 

decreasing in the value of 0 . 
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a  
Pr 

0.5 1 3 5 8 10 

-1.5 (i) 0.20405 0.37741 0.92386 1.35324 1.88850 2.20000 

 (ii) 0.19191 0.36152 0.90309 1.34143 1.82858 2.13693 

 (iii) 0.20405 0.37741 0.92386 1.35324 1.88849 2.20003 

 (iv) 0.192041 0.375270 0.924339 1.365939 1.940330 2.291212 

-0.5 (i) -0.17582 -0.29988 -0.63411 -0.87043 -1.15032 -1.30861 

 (ii) -0.18187 -0.32697 -0.67215 -0.84156 -1.08391 -1.25074 

 (iii) -0.17582 -0.29988 -063411 -0.87043 -1.15032 -1.30861 

 (iv) -0.180900 -0.299868 -0.642121 -0.895765 -1.215944 -1.40990 

0.0 (i) -0.33049 -054964 -1.12219 -1.52124 -1.99185 -2.25743 

 (ii) -0.31006 0.53104 -1.08522 -1.47558 -1.92666 -2.18847 

 (iii) -0.33049 -054964 -1.12219 -1.52124 -1.99184 -2.25742 

 (iv) -0.333726 -0.549499 -1.135373 -149.179 -2.101447 -2.425285 

1.0 (i) -0.59434 -0.95478 -1.86908 -2.50014 -3.24213 -3.66038 

 (ii) -0.91903 -0.57771 -1.81039 -2.28864 -3.00587 -3.18620 

 (iii) -0.59434 -0.95478 -1.86907 -2.50013 -3.24212 -3.66037 

 (iv) -0.594841 -0.952890 -1.881801 -2.551345 -3.388378 -3.890687 

3.0 (i) -1.00841 -1.56029 -2.93854 -3.88656 -5.00047 -5.62820 

 (ii) -0.97665 -1.46569 -2.89007 -3.78072 -4.86245 -5.58576 

 (iii) -1.00841 -1.56030 -2.93854 -3.88656 -5.0046 -5.62820 

 (iv) -1.003639 -1.548572 -2.921988 -3.900769 -5.116296 -5.842330 
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A numerical method has been employed to study 
MHD boundary-layer flow and heat transfer due to a 
stretchingsheet in the presence of a heat source/sink. 
The effects of the variousgoverning parameters on the 
heat transfer characteristicshave beenexamined.  
The key observations can be summarized as follows. 
1. The thickness of velocity boundary layer will 
decrease with anincrease in the temperature 
distributionand magnetic parameters. 
2. The temperature decreases with an increase in the 
value ofthe temperature distributionparameter, 
magnetic parameter, heatsource or sink parameter, 
and thePrandtl number. 
3. The thickness of thethermal boundary layer 
diminishes, withincrease in both thetemperature 

distributionand Prandtl number parameters, and 
opposite result is observed for the magnetic 
parameter. 
4. An increase in the temperature 
distributionparameter will increase both theskin 
friction coefficients and local Nusslet number. 
5. An increase in the magnetic parameter willincrease 
the skin friction. 
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