SUPRA & HOMEOMORPHISM IN TOPOLOGICAL SPACES

Usharani, S

Assistant Professor, Department of Mathematics, Sri Vijay Vidyalaya College of Arts and Science, Dharmapuri

Abstract: In this paper, introduced the concept of contra supra \breve{g} -continuous functions and contra supra \breve{g} -irresolute, slightly supra \breve{g} continuous and obtained the basic properties of supra \breve{g} -Homeomorphism and supra $\breve{g}^{\wedge *}$ - Homeomorphism. Also related the function with some other functions in supra topological spaces.

Keywords: contra supra \breve{g} -continuous functions, contra supra \breve{g} -irresolute, supra \breve{g} -Homeomorphism and supra \breve{g}^{*} -Homeomorphism, slightly supra \breve{g} continuous functions.

AMS Subject Classification: 54C05, 54C08, 54C10.

1. Introduction: In 1983, A.S Mashhour et all,[4] introduced the supra topological spaces and studied S continuous functions and S^* -continuous functions. In 1996, Dontchev [3] introduced the notion of contra continuous functions. In 2007, Caldas, Jafari, [2] introduced a new class of functions called contra- β continuous functions. In 2013, L.Vidyarani and M.Vigneshwaran[8] introduced and discussed about contra supra N-continuous functions.

I introduced the concept of contra supra \breve{g} -continuous functions and contra supra \breve{g} -irresolute and obtain the basic properties of supra \breve{g} - Homeomorphism and supra \breve{g}^* - Homeomorphism. Also related the function with supra slightly \breve{g} -continuous functions in supra topological spaces.

2. Preliminaries: Throughout this paper, (X, τ) , (Y, σ) , (Z, η) or X, Y, Z represent non - empty topological spaces on which no separations axioms are assumed unless otherwise mentioned. For a subset A of a spaces (X, τ) , cl(A), and int(A) denoted closure and interior of A respectively.

Definition: 2.1 A subfamily μ of X is said to be supra topology on X, if (i) $X, \phi \in \mu$

(ii) if $A_i \in \mu$ for all $i \in J$, then $\bigcup A_i \in \mu$. The pair (X, μ) is called supra topological spaces.

The element of μ are called supra open sets in (X,μ) and the complement of supra open sets is called supra closed sets and it is denoted by μ^c .

Definition: 2.2 The supra closure of a set A is denoted by supra cl(A) and defined as supra $cl(A) \subset \{B: B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set is denoted by supra int(A), and defined as supra int(A), and defined as supra int(A) and int(A)

Definition: 2.3 Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subseteq \mu$

Definition: 2.4 A subset A of a space X is called

- (i) supra semi open set [4], if $A \subseteq cl^{\mu}[int^{\mu}(A)]$
- (ii) supra α -open set [3], if $A \subseteq cl^{\mu}[cl^{\mu}(int^{\mu}(A))]$
- (iii) supra regular closed [], if $A = cl^{\mu}(int^{\mu}(A))$
- (iv) supra g -closed [5], if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X
- (v) supra b -open [7], if $A \subseteq cl^{\mu}[int^{\mu}(A)]U(int^{\mu}(A))cl^{mu}(A)$

Definition: 2.1 Let (X,τ) and (X,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau)\to (Y,\sigma)$ is called contra supra \breve{g} continuous function if $f^{-1}(0)$ is \breve{g} closed in (X,τ) for every supra open set O in (Y,σ)

Examples: 2.2 Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, X\}$ and $\sigma = \{\phi, \{a, c\}, X\}$ we have, $\breve{g}(C(X)) = \{\phi, \{a, c\}, X\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is called contra supra \breve{g} continuous.

Theorem: 2.3 Every contra supra continuous is contra supra \breve{g} continuous function.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a contra supra continuous function.Let O be an supra open set (Y,σ) .Since, f is contra supra continuous. Then, $f^{-1}(0)$ is supra closed in (X,τ) .Therefore, f is contra supra \breve{q} continuous.

Converse of the above theorem is need not be true. It is shown by example.

Examples: 2.4: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, \}, Y\}$ we have, $\check{G}(C(X)) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. Since $f^{-1}\{b, c, \} = \{b, c\}$ is contra supra \check{g} continuous but not contra supra continuous. In this section, I introduce a new type of continuous functions called supra \check{g} - continuous function and obtain some of their properties and characterizations.

Theorem: 2.5 Every contra continuous map is contra supra \breve{g} - continuous

Proof: Let (X, τ) and (Y, σ) be two supra topological spaces. Let $f: (X, \tau) \to (Y, \sigma)$ be contra continuous map and A is open in Y. then $f^{-1}(A)$ is an closed set in X. since μ is associated with τ , then $\tau \subset \mu$. Therefore, $f^{-1}(A)$ is supra closed set in X. Since every supra closed set is \breve{g}^{μ} - closed set Hence f is supra \breve{g} continuous.

The converse of the above theorem is not true.

Theorem: 2.6 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . Let f be a map from X into Y, then the following are equivalent:

- (i) f is a contra supra \breve{g} continuous map.
- (ii) The inverse image of a supra closed set in Y is a supra \breve{g} open set in X.
- (iii) The inverse image of a supra open set in Y is a supra \breve{g} closed set in X.

Proof: (i) \Rightarrow (ii). Let A be a supra closed set in Y. Then Y - A is supra open set in Y then $f^{-1}(Y - A) = X - f^{-1}(A)$ is a supra \breve{g} - closed set in X. It follows that $f^{-1}(A)$ is a supra \breve{g} -open subset of X

 $(ii)\Rightarrow(iii)$

Let A be a supra open set in Y. Then Y - A is supra closed set in Y then $f^{-1}(Y - A) = X - f^{-1}(A)$ is a supra \breve{g} - open set in X. It follows that $f^{-1}(A)$ is a supra \breve{g} -closed subset of X

 $(iii) \Rightarrow (i)$ It obviously true.

Theorem:2.7 Let (X,τ) , (Y,σ) and (Z,v) be three topological spaces, If a map $f:(X,\tau) \to (Y,\sigma)$ is contra supra \breve{g} - continuous and $g:(Y,\sigma) \to (Z,v)$ is a contra continuous map,then $g \circ f:(X,\tau) \to (Z,v)$ is conta supra \breve{g} - continuous.

Proof: Let F be any supra closed set in (Z, v). Since $g: (Y, \sigma) \to (Z, v)$ is contra continuous. $g^{-1}(F)$ is supra open in (Y, σ) . Since $f: (X, \tau) \to (Y, \sigma)$ is contra supra \breve{g} - continuous. $f^{-1}[g^{-1}(F)] = (g \circ f)^{-1}(F)$ is \breve{g} - supra closed in (X, τ) and so $g \circ f$ is contra supra \breve{g} - continuous.

3. Supra \breve{g} - Homeomorphism And Supra \breve{g} * - Homeomorphism:

Definition: 3.1 A bijection $f:(X,\tau) \to (Y,\sigma)$ is called supra \breve{g} - Homeomorphism if f is both supra \breve{g} -continuous function and supra - open map

Definition: 3.2 A bijection $f:(X,\tau) \to (Y,\sigma)$ is called supra \breve{g} *- Homeomorphism if f and f^{-1} are supra \breve{g} -irresolute.

we denoted the family of all supra \breve{g} - Homeomorphism (resp.supra \breve{g} *- homeomorphism) of a supra topological space (X,τ) onto itself by $S\breve{g}-h(X,\tau)$ (resp. $S\breve{g}^*-h(X,\tau)$).

Theorem: 3.3 Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective supra \breve{g} - continuous map. then, the following are equivalent.

- (i) f is an \breve{g} -open map.
- (ii) f is an *ğ*-homeomorphism.
- (iii) f is an \breve{g} -closed map.

Proof: (i) (ii) : if f is a bijective supra \breve{g} -continuous map, suppose (i) holds. Let V be a supra closed in (X,τ) , then V c is a supra open in (X,τ) . Since f is a \breve{g} - open map, $f(V^c)$ is a supra \breve{g} -open in (Y,σ) . Hence, f(V) is supra \breve{g} -closed in (Y,σ) implies f^{-1} is supra \breve{g} -continuous. Therefore, f is a supra \breve{g} -homeomorphism.

- (ii) (iii): Suppose f is a supra \breve{g} -homeomorphism and f is a bijective supra \breve{g} -continuous function, then from the definition 3.1, f⁻¹ is a supra \breve{g} -continuous, implies f is a supra \breve{g} -closed map
- (iii) (i) Suppose f is a supra \breve{g} closed map, Let V be a supra open in (X, τ) , then, V c is a supra closed in (X, τ) . since f is a supra \breve{g} -closed map, f(V c) is a supra \breve{g} closed in (Y, σ) . Hence f(V) is a supra \breve{g} open in (Y, σ) . Therefore f is a supra \breve{g} -open map.

Remark: 3.4 The composition of two supra \breve{g} -homeomorphism need not be a supra \breve{g} -homeomorphism.

Example: 3.5 Let $X = Y = Z = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $\sigma = \{\phi, \{a, b\}, Y\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, Z\}$. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be identity maps, Then f and g are supra \breve{g} homeomorphism but their g o f: $(X, \tau) \to (Z, \eta)$ is not supra \breve{g} -homeomorphism.

Theorem: 3.6 Every supra \breve{g} -homeomorphism is supra \breve{g} -continuous.

Proof: It is obviously true from the definition 3.1.

The converse of the theorem need not be true.

Theorem: 3.7 Every supra \breve{g}^* -homeomorphism is supra \breve{g} -irresolute.

Proof: It is obviously from the definition. 3.2,

The converse of the theorem need not be true.

Theorem: 3.8 If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ are supra \breve{g}^* -homeomorphism, then the composition g of is also a supra \breve{g}^* -homeomorphism.

Proof : Let V be a supra \breve{g} -closed set in (Z, η) . Since g is a supra \breve{g}^* -homeomorphism g and g^{-1} are supra \breve{g} - irresolute, then $g^{-1}(V)$ is a supra \breve{g} -closed set in (Y, σ) . Now, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$. Since f is a supra \breve{g}^* -homeomorphism f and f^{-1} are supra \breve{g} -irresolute, then $f^{-1}(g^{-1}(V))$ is a supra \breve{g} -closed set in (X, τ) . Thus, g of is a supra \breve{g} -irresolute.

For a supra \breve{g} -closed set V in (X,τ) , $(g\circ f)(V)=g(f(V))$. By the hypothesis f(V) is supra \breve{g} -closed set in (Y,σ) . Thus, g(f(V)) is supra \breve{g} -closed set in (Z,η) . Hence, $(g\circ f)^{-1}$ is supra \breve{g} -irresolute. Therefore, $g\circ f$ of is supra \breve{g}^* - homeomorphism.

Theorem: 3.9 If $f:(X,\tau) \to (Y,\sigma)$ is a supra \check{g}^* -homeomorphism, then $\check{g} - cl(f^{-1}(B)) = f^{-1}(\check{g} - cl(B))$, for every $B \subset Y$ is a supra \check{g} -closed.

Proof: Since f is a supra \breve{g}^* -homeomorphism, f and f^{-1} are supra \breve{g} irresolute. Let B be a supra \breve{g} -closed set in (Y,σ) . Since f is a supra \breve{g} -irresolute $f^{-1}(B)$ is supra \breve{g} -closed set in (X,τ) . Since, B is a supra \breve{g} -closed set $B = (\breve{g} - cl(B))$. Therefore, $f^{-1}(\breve{g} - cl(B))$ is supra \breve{g} -closed set in (X,τ) . Since $f^{-1}(B)$ is a supra \breve{g} -closed set, $\breve{g} - cl(f^{-1}(B)) = f^{-1}(B)$ is a supra \breve{g} - closed set in (X,τ) . Therefore, $\breve{g} - cl(f^{-1}(B)) = f^{-1}(\breve{g} - cl(B))$ is supra \breve{g} - closed set in (X,τ) .

Theorem: 3.10 If $f:(X,\tau) \to (Y,\sigma)$ is a supra \breve{g}^* - homeomorphism, then $\breve{g} - cl(f(B)) = f(\breve{g} - cl(B))$, for every $B \subset X$ is a supra \breve{g} - closed.

Proof: Since f is a supra \check{g}^* - homeomorphism, f and f^{-1} are supra \check{g} irresolute. Let B be a supra \check{g} - closed set in (X,τ) . Since f^{-1} is a supra \check{g} irresolute f(B) is supra \check{g} - closed set in (Y,σ) . Since, B is a supra \check{g} - closed set $B = (\check{g} - cl(B))$. Therefore, $f(\check{g} - cl(B))$ is supra \check{g} - closed set in (Y,σ) . Since f(B)

is a supra \breve{g} - closed set, $\breve{g} - cl(f(B)) = f(B)$ is a supra \breve{g} - closed set in (Y, σ) . Therefore, $\breve{g} - cl(f(B)) = f(\breve{g} - cl(B))$ is supra \breve{g} - closed set in (Y, σ) .

4. Slightly Supra $\mathbf{\breve{y}}$ Continuous Functions:

Definition: 4.1 A function $f:(X,\tau) \to (Y,\sigma)$ is called slightly supra \breve{g} continuous at a point $x \in X$, if for each supra clopen subset V of Y containing f(x), there exist supra \breve{g} open set U in x containing X such that $f(U) \subseteq V$. The function f is said to be slightly supra \breve{g} continuous if f is slightly supra \breve{g} continuous at each of its points.

Definition: 4.2 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be slightly supra \breve{g} continuous, if the inverse image of every supra clopen set in Y is supra \breve{g} open in X.

Proposition: 4.3 For a function $f:(X,\tau) \to (y,\sigma)$, the following statements are equivalent:

Def 4.1 and Def 4.2 are equivalent, if the inverse image of every supra clopen set in Y is supra \breve{g} open in X.

Proof: Suppose (i) holds. Let O be a supra clopen set in Y and $x \in f^{-1}(0)$. Then $f(x) \in O$ and thus there exists a supra \breve{g} - open set U_x such that $x \in U_x \subseteq f^{-1}(0)$ and $f^{-1}(0) = U_x \in f^{-1}(0)U_x$. since, arbitrary union of supra \breve{g} - open set is supra \breve{g} - open, $f^{-1}(0)$ is supra \breve{g} - open in X and therefore f is slightly supra \breve{g} continuous. Suppose (ii) holds. Let $f(x) \in O$, where, O is a supra clopen set in Y. Since f is slightly supra \breve{g} continuous, $x \in f^{-1}(O)$ where $f^{-1}(O)$ is supra \breve{g} open in X. Let $U = f^{-1}(O)$. Then U is supra \breve{g} open in X, $X \in X$ and X and X is supra X open in X is X open in X

Theorem: 4.4 For a function $f:(X,\tau) \to (y,\sigma)$, the following statements are equivalent.

- (i) f is slightly supra \breve{g} continuous.
- (ii) The inverse image of every supra clopen set O of Y is supra \breve{g} open in X.
- (iii) The inverse image of every supra clopen set O of Y is supra \breve{g} closed in X.
- (iv) The inverse image of every supra clopen set O of Y is supra \breve{g} clopen in X.

Proof: (i) (ii) Follows from the above proposition [5.3]

(ii)(iii) Let O be a supra clopen set in Y which implies O^c is supra clopen in Y. By (ii) $f^{-1}(O^c) = (f^{-1}(O))^c$ is supra \breve{g} open in X. Therefore $f^{-1}(O)$ is supra \breve{g} closed in X.

(iii) (iv) By (ii) and (iii) $f^{-1}(0)$ is supra \breve{g} clopen in X.

(iv)(i) Let O be a supra clopen set in Y containing f(X) by (iv) $U = f^{-1}(O)$ is supra \breve{g} clopen in X. Take $U = f^{-1}(O)$, Then $f(U) \subset O$. Hence, f is slightly supra \breve{g} continuous.

Theorem: 4.5 Every slightly supra continuous function is slightly supra \breve{g} continuous.

Proof: Let $f:(X,\tau) \to (y,\sigma)$ be a slightly supra continuous functions. Let O be a supra clopen set in Y. Then $f^{-1}(O)$ is open in X. since, every supra open set is supra \breve{g} - open. Hence f is slightly supra \breve{g} continuous.

Remark: 4.6 The converse of the above theorem need not be true.

Theorem: 4.7 Every supra \breve{g} continuous function is slightly supra \breve{g} continuous.

Proof: Let $f:(X,\tau) \to (y,\sigma)$ be a supra \breve{g} continuous function. Let O be a supra clopen set in Y. Then $f^{-1}(O)$ is supra open in X and supra \breve{g} - closed in X. Hence f is slightly supra \breve{g} continuous.

Remark: 4.8 The converse of the above theorem need not be true.

Theorem: 4.9 Every contra supra \breve{g} continuous is slightly supra \breve{g} continuous.

Proof: Let $f:(X,\tau)\to (y,\sigma)$ be a contra supra \breve{g} continuous function. Let O be a supra clopen set in Y. Then $f^{-1}(O)$ is supra \breve{g} open in X. Hence, f is slightly supra \breve{g} continuous.

Remark: 4.10 The converse of the above theorem need not be true as can be seen from the following.

Theorem: 4.11 Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following properties hold.

- (i) If f is supra \breve{g} irresolute and g is slightly supra \breve{g} continuous. Then $(g \circ f)$ is slightly supra \breve{g} continuous.
- (ii) If f is supra g irresolute and g is supra g continuous then $(g \circ f)$ is slightly supra g continuous.
- (iii) If f is supra \breve{g} irresolute and g is slightly supra continuous, then $(g \circ f)$ is slightly supra \breve{g} continuous.
- (iv) If f is supra \breve{g} continuous and g is slightly supra continuous, then $(g \circ f)$ is slightly supra \breve{g} continuous.

Proof:

- (i) Let O be a supra clopen set in Z, since, g is slightly supra \breve{g} continuous, $g^{-1}(O)$ is supra \breve{g} open in Y. since , f is supra \breve{g} irresolute, $f^{-1}(g^{-1})$) is supra \breve{g} open in X. since $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$. $g \circ f$ is slightly supra \breve{g} continuous.
- (ii) Let O be a supra clopen set in Z, since g is supra \breve{g} continuous, $g^{-1}(O)$ is supra open in Y, since f is supra \breve{g} irresolute, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open in X. Hence $g \circ f$ is slightly supra \breve{g} continuous.
- (iii) Let O be a supra clopen set in Z. since g is slightly supra continuous, $g^{-1}(O)$ is supra open in Y. since f is supra \breve{g} irresolute, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open in X. Hence $g \circ f$ is slightly supra \breve{g} continuous.
- (iv) Let O be a supra clopen set in Z. since g is slightly supra continuous, $g^{-1}(O)$ is supra open in Y. since f is supra \breve{g} continuous, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open in X. Hence $g \circ f$ is slightly supra \breve{g} continuous.

Theorem: 4.12 Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following properties hold.

- (i) If f is slightly supra \breve{g} continuous and g is perfectly supra \breve{g} continuous, Then $(g \circ f)$ is supra \breve{g} irresolute.
- (ii) If f is slightly supra \breve{g} continuous and g is contra supra continuous then $(g \circ f)$ is slightly supra \breve{g} continuous.
- (iii) If f is supra \breve{g} irresolute and g is contra supra \breve{g} -continuous. Then $(g \circ f)$ is slightly supra \breve{g} continuous.

Proof:

- (i) Let O be a supra \breve{g} open in Z. since g is perfectly supra \breve{g} continuous, $g^{-1}(O)$ is supra open and supra closed in Y. since f is slightly supra \breve{g} continuous, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open in X. Hence $g \circ f$ is supra \breve{g} irresolute.
- (ii) Let O be a supra clopen in Z. since g is contra supra continuous, $g^{-1}(O)$ is supra open and supra closed in Y. since f is slightly supra \breve{g} continuous, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open in X. Hence $g \circ f$ is slightly supra \breve{g} continuous.
- (iii) Let O be a supra clopen in Z. since g is supra contra \breve{g} -continuous, $g^{-1}(O)$ is supra \breve{g} open and supra \breve{g} closed in Y. since f is supra \breve{g} irresolute, $f^{-1}(g^{-1}(O))$ is supra \breve{g} open and supra \breve{g} closed in X. Hence $g \circ f$ is supra \breve{g} continuous.

Theorem: 4.13 If the function $f:(X,\tau) \to (y,\sigma)$ is slightly supra \breve{g} and (X,τ) is - $T_{1/2}$ space, then f is slightly supra continuous.

Proof: Let O be a supra clopen in Y. since, g is slightly supra \breve{g} continuous, $f^{-1}(O)$ is supra \breve{g} open in X, since X is - $T_{1/2}$ space, $f^{-1}(O)$ is supra open in X. Hence f is slightly supra continuous.

Theorem: 4.14 If the function $f:(X,\tau) \to (y,\sigma)$ is slightly supra \breve{g} continuous and (Y,σ) is locally indiscrete space, then f is supra \breve{g} continuous.

Proof: Let O be an open subset of Y. since (Y, σ) is a locally indiscrete space. O is closed in Y. since f is slightly supra \breve{g} continuous, $f^{-1}(O)$ is supra \breve{g} - open in X. Hence, f is supra \breve{g} continuous.

References:

- 1. Arockiarani.I and M.Trinita Pricilla, On Supra T closed sets, *Int.J.of Mathematics Archive*, 2(8), (2011), 1376 1380
- 2. Caldas. M and Jafri.S, Some properties of Contra- β -continuous functions,
- 3. Mem.Fac.Sci.Koch.Univ.(Math)22 (2001), 19-28.

- 4. Devi.R, S.Sampath Kumar and J.Caldas, On Supra α open set and $S\alpha$ continuous functions. *Gen.Mathematics*, Vol 16, Nr, 2, (2008), 77-84
- 5. J. Dontchev, T. Noiri, contra semicontinuous functions, *Mathematica. Pannonica*, 10/2 (1999), 159 168
- 6. Mashhour.A.S, A.A.Allam, E.S.Mahmoud and F.H.Khedr, On supra topological spaces. *Ind.J.Pure and Appl. Mathematics*, 14 (4), (1983), 502 510
- 7. Ravi.O, G.Ramkumar and M.Kamaraj, On supra g closed set. *Int.J.of Advances and Applied Mathematics*, 1 (12), (2011), 52-66
- 8. Sayed.O.R and T.Noiri, On Supra b open sets and supra b continuity on topological spaces. *Euro.J. of Pure and Applied Mathematics*, 3(2), (2010), 295 302
- 9. Vidyarani.L and M.Vigneshwaran, Contra supra N continuous functions in supra topological space, *Journal of global research in mathematical archives*. Vol 1, No 9, Sep 2013.
- 10. Usharani.S and S.Padmasekaran, Further Study of Topological Spaces. *Ph.D thesis, Periyar University, Salem,* Dec 2016.
- 11. Usharani.S, Supra continuous \breve{g} in topological spaces, *Int. J. of Math And Appln*, 6(2-B) 2018, 45 50.
