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Abstract: In this article, we consider a continuous review perishable ),( Ss  inventory system with 

instantaneous service and retrials. We assume that the arrival of customers constitutes a Poisson 

process. The maximum storage of inventory is S  units and life time of each item is exponentially 
distributed. If the primary demand finds inventory level dry, then it is directed to an orbit of infinite 
capacity. The retrial demand from orbit follows exponetial distribution with linear rate. Whenever the 
on-hand inventory level drops to a prefixed level , an order for replenishment is placed. 
The lead time is exponentially distributed. We derived the stability condition and analysed the system 
using Matrix Analytic Method. Various system performance measures are obtained and a suitable cost 
function for minimum expected cost is also derived.  
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Introduction: For the last three decades, there were only a few studies on perishable inventory system. 
A class of perishable items includes medicines, fruits, vegetables and many types of packaged foods. The 
review article Nahmias [7] contributes a remarkable summaries of particular modelling efforts in 

perishable inventory. Ravichandran [11] explored the cost expression for a continuous review ),( sS  

ordering policy inventory system of perishable items with Erlangian life, in the stationary case. The cost 
expression is closely related to the stationary distribution of the stochastic process representing the 
inventory at any time. Jeganathan and Periyasamy [1] considered a continuous review perishable 
inventory system with a service facility. They assumed that the service may interrupt due to some 

physical phenomena and the service resumes after repair. Kalpakam and Sapna [3] studied an ),( Ss  

perishable system with Poisson demands and exponentially distributed lead-times for items with 
exponential lifetimes. Perry and Stadje [10] discussed an inventory system for perishable commodities 
with finite shelf size and finite waiting room for demands. Krishnamoorthy and Jose [5] studied an 

),( Ss  inventory system with positive lead-time and retrial of customers. They constructed a suitable 

cost function and analyzed its convexity. Krishnamoorthy and Anbazhagan [4] analyzed a perishable 
stochastic inventory system under continuous review at a service facility in which the waiting hall for 
customers is of finite size. Sivakumar [12] considered a continuous review perishable inventory system 
with a finite number of homogeneous sources of demands. Kumar and Elango [6] considered a single 
server queueing inventory system with finite waiting space. They discussed the problem as a Markov 
decision model and obtained the minimal average cost of the service using value iteration algorithm. 
The unique equilibrium probability distribution is also obtained in Matrix geometric form in which the 
two dimensional state space contains infinite queue length and finite capacity of inventory. Kalpakam 
and Arivarignan [2] analysed a continuous review inventory system in which items are removed from 
stock one at a time either due to random demand or random failure of item.  
 
The paper is organized as follows. Section 2 explains mathematical modeling and analysis of the system. 
Section 3 describes the steady state probability vector. Algorithmic analysis is included in section 4. 
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System performance measures are obtained in section 5. Section 6 contains the cost analysis of the 
system.  
 
Mathematical Modeling and Analysis:  The following are the assumptions and notations used in this 
model. 

 
Assumptions: 
1. Inter-arrival times of primary demands are  exponentially distributed with parameter   a .  

2. Retrial demands are exponentially distributed with parameter ,bi when there are i  customers in the 

orbit.  
3. Life time of each item is exponentially  distributed with rate w .  

4. Lead time is exponentially distributed with parameter q .  
 
Notations: 
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 Neuts-Rao truncation modifies the generator Q  to the following form, where 

:for   and = 22,11, NiAAAA ii ³=  For the detailed discussion of the truncation, one can refer [8] 
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 Let ),,,(= 10 Sppp Kπ  be the steady state probability vector satisfying 0=Aπ  and 1=πe , then  
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  The system is stable if 1<)(Nr , where  
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 From the well known result (see Neuts [9]) on positive recurrence of Q  which states that eπeπ 20 < AA

, the result follows.  
 

 Steady State Probability Vector: Let ),,,,,(= 110 KK NN xxxx -x  be the steady state probability 

vector of Q . Under the stability condition, sxi ' )( Ni ³ are given by  
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 Algorithmic Analysis: The rate Matrix R is given by 
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and   0=)(0 NR , where N  can be chosen such that enn |<1)()(| +- NN , e  is an arbitrary 

constant and )(Nn , the spectral radius of R . 

 

Calculation of Boundary Probabilities: Let ),,,(= 110

*

-Nxxx Kx be the probability vector 

corresponding to the boundary portion of Q  as in (1). Then 
*
x  is the stationary vector of the 

infinitesimal generator T  given below 
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Now the system (2) can be written as 0.=*Tx  To solve this, we use the block Gauss-Seidel iterative 

method. The vectors 110 ,,, -Nxxx K  in the 1)( +n th iteration are given by  
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Each iteration is subject to the normalizing condition 

(3).  
 

System Performance Measures : We partition the components of x  as 0))(,,,(= ,,1,0 ³iyyyx Siiii K

. Then important performance measures of the system under steady state are 
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 5.  The overall rate of retrial is given by ji
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 7.  Fraction of successful rate of retrials is 
R

SR
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Cost Analysis :    Define the expected total cost of the system per unit time as  
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Now, one can find minimum value of expected total cost per unit time by varying the different 
parameters α, β, ω and θ.   
 

Concluding Remarks: In this article, we studied a continuous review perishable ),( Ss  inventory 

system with infinite orbit and retrials. The primary demand constitutes a Poisson process. Assumptions 
made on retrial demand, life time, lead-time are exponential distributions. We analyzed the system 
using Matrix Analytic Method. Stability condition and important system performance measures are 
derived. The expression for expected total cost is also obtained. One can extend the present study to 
another one with Markovian Arrival Process (MAP) and positive service time. 
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