
A COMPARATIVE STUDY OF SOFTWARE COMPLEXITY METRIC

ANKITA, VINOD K. BHALLA

Abstract: With the advancement of software development the demand for software is growing day by day and
to meet these requirements the complexity of the software goes on increasing. So, in this paper three main
metrics are proposed. Three software complexity metrics Line of code, Halstead’s Measures of Complexity and
Cyclomatic Complexity metrics are used but Cyclomatic Complexity metric is the best and strong metric
among these three. First two metrics line of code and Halstead’s Measures of Complexity ignores the
complexity from the control graph and CC calculates the complexity via decision structure graph and that’s
why also called conditional complexity.

Keywords: Software complexity, Decision statements, Metric, Data flow,Control graph.

Introduction: The prime focus of software engineers
and researchers is to get quality software. For that
purpose it is very essential to measure the software
complexity and high complexity software difficult to
understand, read and hence, troublesome to change
in future. Complex software considered to be the
reason for the presence of defects, this leads to
consider that software complexity is responsible for
poor software quality.
Mainly three software complexity metrics LOC,
Halstead’s measure of complexity and cyclomatic
complexity metrics are used but there are some
drawbacks of LOC and Halstead’s measure
complexity metric and to overcome these problems
strongest metric cyclomatic complexity metric was
introduced among them and three methods are used
to measure the cyclomatic complexity. Mainly
cyclomatic complexity is calculated from the control
flow graph which consists of number of edges and
nodes and there is a significance of this calculated
cyclomatic complexity number. This number should
be in between 1-10 and should not be more than 20.
Cyclomatic complexity number greater than 10
signifies that software has high complexity and there
will be a chance of more errors in that software. One
popular eclipse plug-in named “Metric” is used to
calculate the Cyclomatic Complexity. This “Metric”
Plug-in provides a number of features like number of
classes, number of methods, number of overridden
methods, Depth of inheritance tree, total lines of
code, number of interfaces, number of packages,
specialization index and many other features along
with McCabe Cyclomatic Complexity.
Software Complexity Metrics:
A.LOC: LOC is one of the oldest metric and is used to
measure the software complexity by counting the
number of lines from the source code or via physical
length. It is used to measure the productivity or man
effort to develop a program. But there are various
drawbacks of this metric, it is calculated at the end of
the application completion, ignores the complexity

from decision statements and consider the complexity
of each code line same. Physical size that is lines of
code (LOC) metric is not considered adequate
because if there are 40 or 50 lines of code consisting
of 25 consecutive “If then” constructs may have
million distinct control paths, only a small percentage
of which would probably ever be tested[1].
B.Halstead’s Measures of Complexity:
It basically used to measure complexity by counting
the number of unique operators (op1), operands (op2)
and total number of operators (OP1) and operands
(OP2) in a program. This metric is use to measure
error rate, length, difficulty level etc. for a software
development [2].
ESL=op1log2 (op1) + op2log2 (op2) (1)
SL= OP1+ OP2 (2)
SV= op1 + op2 (3)
VOL=SL * log2 (n) (4)
V*= (op1OP2 / 2op2) (OP1+OP2) log2 (op1+op2) (5)
LVL=V*/VOL= (2/ op1)*(op2/ OP2) (6)
 DL=VOL/V*= (op1/ 2) * (OP2/op2) (7)
 PE=VOL * DL (8)
 EE=VOL/S* (9)
 PT= PE/18 (10)
Where,
 ESL: Expected software length

SL: Software length
SV: Software vocabulary
VOL: Volume
LVL: Level
DL: Difficulty Level
PE: Programming Effort
EE: Error Estimate
PT: Programming Time

 V*: software ideal volume.
S* is the programmer ability’s and Halstead’s set this
value to be 3000.
There are also some problems with Halstead’s
Measures of Complexity, it also ignores the
complexity from the decision statements like if, loops
etc. but used to calculate the complexity from the

Engineering Sciences International Research Journal Volume 2 Issue 1 (2014) ISSN 2320-4338

International Multidisciplinary Research Foundation 246

data flow of a software and it is very difficult to count
the number of operators and operands from the
program[3].
So, to overcome these problems another metric
cyclomatic complexity was introduced.
C. Cyclomatic Complexity metric:
This metric was developed by Thomas J. McCabe, Sr.
in 1976. McCabe's cyclomatic complexity is also used
to measure the structural complexity of a module. It
measures the complexity by counting the number of
decision statements from the program and that’s why
also called conditional complexity [4] and also used
to measure the number of independent paths
through the graph.
It is considered that more complex software has more
number of errors and after that more effort will be
required to correct these errors and then it becomes
difficult to change the software in the future [5].
McCabe's cyclomatic complexity is a software quality
metric and higher the cyclomatic complexity number,
the more complex the code will be.
If the cyclomatic complexity number of a module is
in the range of 1 to 10 then it is considered as risk free

module. If the same lies in the range of 10-20 then it
is considered as a target of moderate risk. 30-40 range
of cyclomatic number makes module highly risky and
the range exceeding 40 exempt it from the candidate
of testing. [6].
This metric has a strong correlation with LOC [7] and
also along with Halstead’s measure of complexity.
Instead there is no relation between control path and
number of operators and operands but still with the
increase of control path, number of operators and
operands also get increased. So, this shows a
correlation between Halstead’s and Cyclomatic
complexity metric.
Cyclomatic complexity metric does not consider the
complexity from the data flow of software. Example if
there are 1000 lines of code in any software and there
is no conditional statements in the code then
cyclomatic complexity metric calculates the
complexity of that software as one. One more
problem with this metric is that it considers the
complexity of two statements having while and if as
same [8].

Table I: Software Complexity Metrics

Parameters

Software Complexity Metrics

LOC Halstead’s Cyclomatic Complexity

Approach Used Uses physical length of
the code.

Uses the count of unique
operators and operands.

Calculates the number of
independent paths from
control flow graph.

Software Life Cycle Phase It can be calculated
either at the coding
stage or after the end
of the complete life
cycle phase.

It can be calculated only
at the end of the
complete life cycle phase.

It can be calculated at the
design or code phase of the
life cycle.

Bug Density Concave relationship Forecasts the bug
density.

Highly related

Base used for calculation Source Code Source Code Logic Structure

Language Language independent Language dependent Language independent

Usability

Easy

Medium Medium

Data and Control
Statements

Ignores the complexity
generated by the
decision statements.

Considers the complexity
due to data but ignores
the complexity due to
decision statements.

Ignores the complexity due
to data but considers the
complexity due to decision
statements.

Theory Base No No Yes

Additional Uses Productivity and man
effort can also be
calculated.

Error rate , vocabulary,
code length, difficulty
level, volume, effort, time
can be calculated.

Risks associated, effort,
relative complexities can be
calculated.

Popularity Narrow Wide Wide

Different methods for Cyclomatic complexity: Three methods used to calculate the cyclomatic complexity:

Engineering Sciences International Research Journal Volume 2 Issue 1 (2014) ISSN 2320-4338

ISBN 978-93-84124-04-5 247

edges – # nodes + 2P
1. # binary decision statements + 1
2. # closed regions + 1
A First Method:
In first technique creates a control flow graph of a
program’s source code and then measures all linearly
independent paths from the graph. This control flow
graph consists of nodes which are connected by edges

and then complexity is measured through this control
flow graph.
Cyclomatic complexity measured by:
CC (Cyclomatic complexity) = #edges-#nodes+2P
Where, E is the number of edges, and represent the
flow of control between nodes, N is the number of
nodes represent expressions and statements and P is
the number of connected component[9],[10].

Fig. 1: Pseudo code with Control Flow Graph

So, in first technique control flow diagram is used to
find the cyclomatic complexity. There are total 6
nodes and 7 edges in this control flow graph.
Control flow graph actually represents the logic
structure of a program’s source code or module which
has only single entry point and exit point.
Control Flow Graph is very easy to understand and
always gives useful results. In CFG there is a node
labeled Start that has no incoming edge, and another
node labeled End that has no outgoing edge. From
that graph now calculate the number of edges and
nodes and put in formula.
B Second Method:
In the second method McCabe cyclomatic complexity
is calculated by determining the number of decision
statements which are caused by conditional
statements in a program and plus one.
So, it is one of the simplest method for calculating
the cyclomatic complexity because we directly count
the number of decisional statements like if,
loops(while, for, do-while) etc. from the source code.
Cyclomatic complexity = # decision statements + 1[9].
In above mentioned code numbers of decision or
conditional statements are two (if and while). So,
cyclomatic complexity from this method is also 3.
There are some basic rules that can be used to
measure cyclomatic complexity.

1. Calculate the number of if/ then, else if but do not
count the else statements in the program.

2. Find the switch statement and count the total of
the cases in the program but do not count the
default in the program.

3. Calculate all the loops like for, while and do-while
statements and also all the try/catch statements in
the program.

4. Count conditional operator && and || operator
and also ternary operators like ?: from the
expression.

Now add one to the numbers from the previous step
numbers.

C Third Method:
In third method,
Cyclomatic complexity = # enclosed areas + 1
Calculate the number of closed regions from control
flow diagram. Here, number of closed regions are 2.
So, Cyclomatic complexity is= 2+1=3.
From all three methods we get the same Cyclomatic
complexity number and Cyclomatic number will be
equal to number of independent paths in the graph.
Discussion: In this section the focus is on the
cyclomatic complexity. Why this is preferred over
two metrics LOC and Halstead’s metric, Different
methods to calculate the Cyclomatic Complexity
number and what will be the effect of this cyclomatic

A COMPARATIVE STUDY OF SOFTWARE COMPLEXITY METRIC

IMRF Journals 248

number on other parameters.
All three metrics are used to measure the software
complexity but only cyclomatic complexity metric
measures the complexity of software from conditional
statements. Cyclomatic complexity metric uses three

methods to calculate the cyclomatic complexity. In
first method control flow graph is generated from the
source code and then calculate the number of nodes
and edges from graph.

Fig. 2: Cyclomatic Complexity metric

Second method uses or calculates the number of
decision statements directly from source code and in
third method number of regions are calculated from
the control flow graph. After that if this calculated
cyclomatic number is greater than 10 then there will
be chances of more errors in the software then more
testing effort will be required to find these errors. So,
reliability, performance, maintenance cost, quality
and other factors will get affected.

Conclusion: McCabe’s cyclomatic complexity is one
of the best metric used to measure the complexity of
software among LOC and Halstead’s metric. It is
language independent metric and can be calculated
at the design or code phase of the life cycle of
software and along with effects many factors like
performance, quality etc.

References:

1. Thomas J. Mccabe, “A Complexity Measure”, IEEE

Transactions on Software Engineering, Dec. 1976,
Vol. SE-2, No. 4, pp.308 - 320.

2. Vincent Y. Shen, Tze-Jie Yu, Stephen M. Thebaut,
”Identifying Error-Prone Software-An Empirical
Study”, IEEE Transactions on Software
Engineering, April 1985, Vol. SE-11, No. 4, pp.317 -
324.

3. Ayman Madi, Oussama Kassem Zein and Seifedine
Kadry, “On the Improvement of Cyclomatic
Complexity Metric”, International Journal of
Software Engineering and Its Applications, March
2013, Vol. 7, No. 2.

4. Ambuj Kumar Agarwal, Dr. Vinodini katiyar,

“Implementation of Cyclomatic Complexity
Matrix”, Journal of Nature Inspired Computing
(JNIC), 2013,Vol. 1, No. 2.

5. N. I. Enescu, D. Mancas, E. I. Manole, and S.
Udristoiu,” Increasing Level of Correctness in
Correlation with McCabe Complexity”,
International Journal of Computers, 2009, Vol. 3.

6. Geoffrey K. Gill and Chris F. Kemerer, “Cyclomatic
Complexity Density and Software Maintenance
Productivity”, IEEE Transactions on Software
Engineering, Dec. 1991,Vol. 17, No. 12, pp.1284 -
1288.

7. Graylin Jay, Joanne E. Hale, Randy K. Smith, David
Hale, Nicholas A. Kraft, Charles Ward,

Engineering Sciences International Research Journal Volume 2 Issue 1 (2014) ISSN 2320-4338

ISBN 978-93-84124-04-5 249

“Cyclomatic Complexity and Lines of Code,
Empirical Evidence of a Stable Linear
Relationship”, J. Software Engineering &
Application, June 2009, pp.137-143.

8. Sheng Yu, Shijie Zhou, “A Survey on Metric of
Software Complexity”, IEEE International
Conference on Information Management and
Engineering (ICIME), 16-18 April 2010, Chengdu,
pp. 352 – 356.

9. M. R. Woodward, M. A. Hennell and D. A. Hedley,
“A measure of control flow complexity in program
text”, IEEE Transactions on Software Engineering,
Jan. 1979,Vol. 5, No. 1.

10. Mir Muhammd Suleman Sarwar, Ibrar Ahmad,
Sara Shahzad, “Cyclomatic Complexity for WCF: A
Service Oriented Architecture”, Frontiers of
Information Technology (FIT) 10th International
Conference, 17-19 Dec. 2012, Islamabad, pp.175 –
180

* * *

Thapar University, Student, ankitagarg60@gmail.com
Thapar University, Assistant Professor, vkbhalla@thapar.edu

A COMPARATIVE STUDY OF SOFTWARE COMPLEXITY METRIC

IMRF Journals 250

