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1. Introduction and Preliminaries 

In 1961 Kelly introduced the concept of bitopological spaces as an extension of topological spaces [6]. A 
bitopological space (X, τ1, τ2) is a nonempty set X equipped with two topologies τ1 and τ2 [6]. The study 
of quasi open sets in bitopological spaces was initiated by Datta in 1971 [1]. In a bitopological space (X, τ1, 

τ2) a set A of X is said to be quasi open if it is a union of a τ1-open set and a τ2-open set [1]. Complement 
of a quasi open set is termed quasi closed. Every τ1-open (resp. τ2-open) set is quasi open but the 
converse may not be true. Any union of quasi open sets of X is quasi open in X. The intersection of all 
quasi closed sets which contains A is called quasi closure of A. It is denoted by qCl(A) )[1]. The union of 
quasi open subsets of A is called quasi interior of A. It is denoted by qInt(A) [1].  
 
Mashhour introduced the concept of preopen sets in topology [12]. A subset A of a topological space (X, 
τ) is called preopen if A  Int(Cl(A)) [12]. Further, in 1995 Tapi introduced the concept of quasi preopen 
sets in bitopological spaces [14]. A set A in a bitopological space (X, τ1, τ2) is called quasi preopen if it is a 
union of a τ1-preopen set and a τ2-preopen set [14]. Complement of a quasi preopen set is called quasi pre 
closed. Every τ1-preopen (τ2-preopen, quasi open) set is quasi preopen but the converse may not be true. 
Any union of quasi preopen sets of X is a quasi preopen set in X. The intersection of all quasi pre closed 
sets which contains A is called quasi pre closure of A. It is denoted by qpCl(A) [14].  The union of quasi 
preopen subsets of A is called quasi pre interior of A. It is denoted by qpInt(A) [14]. 
 
The study of ideal topological spaces was initiated by Kuratowski [11] and Vaidyanathaswamy [15]. 
Applications to various fields were further investigated by Dontchev [2], Jankovic and Hamlett [5], Nasef 
and Mahmoud [13] and others.  
 
An Ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies:  

i. A  I and B Ì A Þ B  I and   

ii. A  I and B  I Þ AÈB  I  
An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I). If   

 (X) is the set of all subsets of X, in a topological space (X, τ) a set operator  (.)
*
:  (X) ®  (X) is called 

the local mapping [2] of A with respect to τ and I and is defined as follows:      

   (τ, I) = {xÎX÷U Ç A Ï I, " UÎ τ(x)}, where τ(x) = {UÎ τ ÷ xÎU}.   
 

Definition 1.1. [9]. If (X, τ1, τ2) is a bitopological space then (X, τ1, τ2, I) is an ideal bitopological 
 space if I is an ideal on X. 
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In 2010 Jafari and Rajesh defined quasi local mapping of A with respect to τ1, τ2 and I and defined it as 
follows (τ1, τ2, I) = {xÎX÷U Ç A Ï I ," quasi open set U containing x} [4]. 

 

Definition1.2. [7]. Given an ideal bitopological space (X, τ1, τ2, I) the quasi pre-local mapping of A with 
respect to τ1, τ2 and I denoted by (τ1, τ2, I) (more generally as ) is defined as (τ1, τ2, I) = {xÎX÷U 

Ç A Ï I ," quasi pre-open set U containing x} 

Definition1.3. [7]. A subset A of an ideal bitopological space (X, τ1, τ2, I) is qpI- open if                  A Ì 
qpInt( ) and qpI- closed if its complement is qpI- open.  

Definition1.3. [7]. A mapping  f: (X, τ1, τ2, I) ® (Y, σ1, σ2) is called a  qpI- continuous if        f 
-1
(V) is a qpI- 

open set in X for every quasi open set V of Y 
 
Definition1.4. [7].  In an ideal bitopological space (X, τ1, τ2, I) the quasi -pre closure of A of X denoted 

by qpCl
*
(A) is defined by qpCl

*
(A) = A È       

Definition1.5. [7].  A subset A of an ideal bitopological space (X, τ1, τ2, I) is said to be a qpI- 

neighbourhood of a point x  X if $ a qpI- open set O such that x O Ì A  
Definition1.6. [7]. Let A be a subset of an ideal bitopological space (X, τ1, τ2, I) and x  X. Then  x is 

called a qpI-interior point of  A if  $ V a qpI- open set in X such that x Î V Ì A. The set of all qpI- 
interior points of A is called the qpI- interior of A and is denoted by qpIInt(A). 
 

Definition1.7. [7].  Let A be a subset of an ideal bitopological space (X, τ1, τ2, I) and x  X. Then x is 

called a qpI-cluster point of A, if V Ç A ¹ , for every qpI- open set V in X. The set of all qpI-cluster 
points of A denoted by qpICl(A) is called the  qpI-closure of  A . 
 

Definition 1.8. [3]. An ideal topological space (X, τ, I) is called *-connected if X cannot be written as the 
disjoint union of a nonempty open set and a nonempty *-open set. 
 
Definition 1.9.  [8]. An ideal bitopological space (X, τ1, τ2, I) is called pairwise *-connected if X cannot 
be written as the disjoint union of a nonempty  open set and a nonempty  -open set. {i , j = 1, 2;  i ≠ j} 

  

Definition 1.10. [8]. Nonempty subsets A, B of an ideal bitopological space (X, τ1, τ2, I), are called 

pairwise *-separated if Cl*(A) Ç B = A Ç Cl(B) = f. {i , j = 1 , 2;  i ≠ j} 

 
2. qpI- Connectedness in Ideal Bitopological Spaces 

 
Definition 2.1. An ideal topological space (X, τ1, τ2, I) is called qpI- connected  if X cannot be written as 
the disjoint union of a nonempty quasi open set and a nonempty qpI- open set.                                                                                                                    
 

Definition 2.2. Nonempty subset A, B of an ideal bitopological space (X, τ1, τ2, I) are called qpI-

separated if  qCl(A) Ç B = A Ç qpICl(B) = f. 
  

Theorem 2.1.  If A, B are -separated sets of an ideal bitopological space (X, τ1, τ2, I)  and A È B Î  Ç  
then A is qpI- open and B is quasi open.  

Proof:  Since A and B are qpI-separated in X, then B = (A È B) Ç (X - qCl(A)). Since     AÈ B is biopen 

and qCl(A) is quasi closed in X, B is quasi open in X. Similarly A = (A È B) Ç (X - qpICl(B)) and we 
obtain that A is qpI-open in X. 
 

Theorem 2.2. Let (X, τ1, τ2, I) be an ideal bitopological space and A, B Ì Y Ì X. Then A and B are qpI-
separated in Y if and only if A, B are qpI-separated in X. 

Proof:  It follows from qCl(A) Ç B = A Ç qpICl(B) = f and the fact that A, B Ì Y Ì X. 
 
Theorem 2.3. If f: (X, τ1, τ2, I) → (Y, σ1, σ2) is a qpI- continuous onto mapping. Then if     (X, σ1, σ2, I) is a 
qpI-connected ideal bitopological space (Y, σ1, σ2) is also quasi connected. 



UGC Approved Journal - Journal No 43832 

 

 
Journal Published by IMRF Journals | Mar 2018 Edition                                                        |    136  

Proof: It is known that connectedness is preserved by continuous surjections. Hence every qpI-open set 
is also quasi open. Hence, qpI- connected space is also quasi connected.  
 
Definition 2.3.  A subset A of an ideal bitopological space (X, τ1, τ2, I) is called qpI-s-connected if A is 
not the union of two nonempty qpI-separated sets in (X, τ1, τ2, I).  
 
Theorem 2.4. Let Y be a biopen subset of an ideal bitopological space (X, τ1, τ2, I)  
The following are equivalent: 

i. Y is qpI-s-connected in (X, τ1, τ2, I)   
ii. Y is qpI- connected in (X, τ1, τ2, I).  

Proof: i) Þ ii) Let Y be qpI-s-connected in (X, τ1, τ2, I) and suppose that Y is not qpI-connected in (X, τ1, 

τ2, I). There exist non empty disjoint quasi open set A, in Y and qpI- open set B in Y s.t Y =  A È B. Since 
Y is biopen in X and A and B are quasi open and qpI- open in X respectively and A and B are disjoint, 

then qCl(A) Ç B =  = A Ç qpICl(B). This implies that A, B are qpI-separated sets in X. Thus, Y is not 
qpI-s-connected in (X, τ1, τ2, I). Hence we arrive at a contradiction and Y is qpI- connected in                
(X, τ1 , τ2, I).  

ii) Þ i)  Suppose Y is qpI-connected in (X, τ1, τ2, I) and Y is not qpI-s-connected in             (X, τ1, τ2, I). 

There exist two qpI-separated sets A, B  s.t Y = AÈ B. By Theorem 2.1, A and B are qpI-open and quasi 
open in Y respectively. Since Y is biopen in X, obviously A and B are qpI- open and quasi open in X 
respectively. Also Y is qpI-connected so Y cannot be written as the disjoint union of a nonempty quasi 
open set and a nonempty qpI- open set. This is a contradiction and Y is qpI-s-connected. 
 

Theorem 2.5.  Let (X, τ1, τ2, I)  be an ideal bitopological space. If A is a qpI-s-connected set of X and H, G 

are qpI-separated sets of X with A Ì H È G, then either A Ì H or A Ì G.         

Proof:  Let A Ì H È G. Since A = (A Ç H) È (A Ç G), then (A Ç G) Ç qCl(A Ç H) Ì G Ç qpICl(H) = . By 

similar reasoning, we have (A Ç H) Ç qCl(A Ç G) Ì H Ç qpICl(G) = . If A Ç H and A Ç G are 

nonempty, then A is not qpI- s-connected. This is a contradiction. Thus, either A Ç H =  or A Ç G =  

This implies that either A Ì H or A Ì G. 
 
Theorem 2.6.  If A is a qpI-s-connected set of an ideal bitopological space (X, τ1, τ2, I) and  

A Ì B Ì qCl (A ) Ç qpICl(B) then B is qpI-s-connected. 
Proof:  The theorem can easily be proved by taking the contradiction. 
  

Theorem 2.7. If {Mi: i Î I} is a nonempty family of qpI-s-connected sets of an ideal bitopological space 

(X, τ1, τ2, I) with  Î
Ç

 ≠ f Then Î
È   is qpI-s-connected. 

Proof: Suppose that Î
È    is not qpI-s-connected. Then we have Î

È  = H È G, where H and G are 

qpI-separated sets in X. Since Î
Ç ≠ f  we have a point x in Î

Ç . Since             x Î Î
È , either x ε H or 

x ε G. Suppose that x ε H. Since x ε Mi for each i ε I, then Mi and H intersect for each i ε I.  By theorem 

2.5: Mi Ì H or Mi Ì G. Since H and G are disjoint, Mi Ì  H for all i ε I and hence Î
È  Ì H. This implies 

that G is empty. This is a contradiction. Suppose that x ε G. By similar way, we have that H is empty 
which is a contradiction. Thus, Î

È   is qpI-s-connected. 
 
Theorem 2.8. Suppose that {Mn:  n ε N} is an infinite sequence of qpI-connected open sets of an ideal 

space (X, τ1, τ2, I) and Mn Ç Mn+1 ≠ f  for each n ε N. Then Î
È   is               qpI-s-connected. 

Proof: By induction and Theorems 2.4 and 2.7, the set Pn = È   is a qpI-connected open set for each 
n ε N. Also, Pn has a nonempty intersection. Thus Î

È is qpI-connected. 
 

Definition 2.4.  Let X be an ideal bitopological space (X, τ1, τ2, I) and x Î X. The union of all qpI-s-
connected subsets of X containing x is called the qpI-component of X containing x. 
 
Theorem 2.9. Each qpI-component of an ideal bitopological space (X, τ1, τ2, I) is a maximal qpI-s 
connected set of X. 
Proof:  Obvious. 
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Theorem 2.10. The set of all distinct qpI-components of an ideal bitopological space           (X, τ1, τ2, I) 
forms a partition of X. 
Proof: Let A and B be two distinct qpI-components of an ideal bitopological space (X, τ1, τ2, I) 

containing x and y respectively {x ≠ y}. Suppose that A and B intersect. Then, by Theorem 2.7, A È B is 

qpI-s-connected in X. Also, A, B  A È B, so A, B are not maximal and thus A, B are disjoint. Hence they 
partition X. by induction it can easily be proved that the set of all distinct qpI-components of X forms a 
partition of X. 
 
Theorem 2.11. Each qpI- component of an ideal bitopological space (X, τ1, τ2, I) is qpI-closed in X. 
Proof:  Let A be a qpI-component of X. Therefore qpCl(A) is qpI-s-connected and A = qpCl (A). Thus, A 
is qpI-closed in X. 
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