qpI- CONNECTEDNESS IN IDEAL BITOPOLOGICAL SPACES

Dr. Mandira Kar

Head, Dept. of Mathematics, St. Aloysius College, Jabalpur, Madhya Pradesh, India. Pin code 482001

Prof. S. S. Thakur

Principal, Jabalpur Engineering College, Jabalpur, Madhya Pradesh, India. Pin code 482011

Abstract: The purpose of this paper is to introduce and study the notion of qpI- connectedness in ideal bitopological spaces. We shall also study the notions of qpI- separated sets in ideal bitopological spaces

Keywords: Ideal bitopological spaces, qpI- connected, qpI- separated sets, qpI- s-connected.

AMS Mathematics Subject Classification: 54A10, 54A05, 54A20, 54C08

1. Introduction and Preliminaries

In 1961 Kelly introduced the concept of bitopological spaces as an extension of topological spaces [6]. A bitopological space (X, τ_1, τ_2) is a nonempty set X equipped with two topologies τ_1 and τ_2 [6]. The study of quasi open sets in bitopological spaces was initiated by Datta in 1971 [1]. In a bitopological space (X, τ_1, τ_2) a set X of X is said to be quasi open if it is a union of a τ_1 -open set and a τ_2 -open set [1]. Complement of a quasi open set is termed quasi closed. Every τ_1 -open (resp. τ_2 -open) set is quasi open but the converse may not be true. Any union of quasi open sets of X is quasi open in X. The intersection of all quasi closed sets which contains X is called quasi closure of X. It is denoted by Y qCl(X) [1]. The union of quasi open subsets of X is called quasi interior of X. It is denoted by Y qInt(X) [1].

Mashhour introduced the concept of preopen sets in topology [12]. A subset A of a topological space (X, τ) is called preopen if $A \subset Int(Cl(A))$ [12]. Further, in 1995 Tapi introduced the concept of quasi preopen sets in bitopological spaces [14]. A set A in a bitopological space (X, τ_1, τ_2) is called quasi preopen if it is a union of a τ_1 -preopen set and a τ_2 -preopen set [14]. Complement of a quasi preopen set is called quasi preclosed. Every τ_1 -preopen $(\tau_2$ -preopen, quasi open) set is quasi preopen but the converse may not be true. Any union of quasi preopen sets of X is a quasi preopen set in X. The intersection of all quasi pre closed sets which contains A is called quasi pre closure of A. It is denoted by qpCl(A) [14]. The union of quasi preopen subsets of A is called quasi pre interior of A. It is denoted by qpInt(A) [14].

The study of ideal topological spaces was initiated by Kuratowski [11] and Vaidyanathaswamy [15]. Applications to various fields were further investigated by Dontchev [2], Jankovic and Hamlett [5], Nasef and Mahmoud [13] and others.

An Ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies:

- i. $A \in I$ and $B \subset A \Rightarrow B \in I$ and
- ii. $A \in I$ and $B \in I \Rightarrow A \cup B \in I$

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . If $\mathcal{P}(X)$ is the set of all subsets of X, in a topological space (X, τ) a set operator $(.)^*:\mathcal{P}(X) \to \mathcal{P}(X)$ is called the local mapping [2] of A with respect to τ and I and is defined as follows:

 $A^*(\tau, I) = \{x \in X \mid U \cap A \notin I, \forall U \in \tau(x)\}, \text{ where } \tau(x) = \{U \in \tau \mid x \in U\}.$

Definition 1.1. [9]. If (X, τ_1, τ_2) is a bitopological space then (X, τ_1, τ_2, I) is an ideal bitopological space if I is an ideal on X.

In 2010 Jafari and Rajesh defined quasi local mapping of A with respect to τ_1 , τ_2 and I and defined it as follows $A_q^*(\tau_1, \tau_2, I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi open set U containing } x\}$ [4].

Definition1.2. [7]. Given an ideal bitopological space (X, τ_1, τ_2, I) the quasi pre-local mapping of A with respect to τ_1 , τ_2 and I denoted by $A_{qp}^*(\tau_1, \tau_2, I)$ (more generally as A_{qp}^*) is defined as $A_{qp}^*(\tau_1, \tau_2, I) = \{x \in X | U \cap A \notin I, \forall \text{ quasi pre-open set } U \text{ containing } x\}$

Definition1.3. [7]. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is qpI- open if $A \subset qpInt(A_{qp}^*)$ and qpI- closed if its complement is qpI- open.

Definition1.3. [7]. A mapping $f: (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is called a qpI- continuous if $f^{-1}(V)$ is a qpI-open set in X for every quasi open set V of Y

Definition1.4. [7]. In an ideal bitopological space (X, τ_1, τ_2, I) the quasi * -pre closure of A of X denoted by $qpCl^*(A)$ is defined by $qpCl^*(A) = A \cup A_{qp}^*$

Definition1.5. [7]. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be a qpI-neighbourhood of a point $x \in X$ if \exists a qpI-open set O such that $x \in O \subset A$

Definition1.6. [7]. Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. Then x is called a qpI-interior point of A if $\exists V$ a qpI- open set in X such that $x \in V \subset A$. The set of all qpI-interior points of A is called the qpI- interior of A and is denoted by qpIInt(A).

Definition1.7. [7]. Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. Then x is called a qpI-cluster point of A, if $V \cap A \neq \emptyset$, for every qpI- open set V in X. The set of all qpI-cluster points of A denoted by qpICl(A) is called the qpI-closure of A.

Definition 1.8. [3]. An ideal topological space (X, τ, I) is called *-connected if X cannot be written as the disjoint union of a nonempty open set and a nonempty *-open set.

Definition 1.9. [8]. An ideal bitopological space (X, τ_1, τ_2, I) is called pairwise *-connected if X cannot be written as the disjoint union of a nonempty τ_i open set and a nonempty τ_j^* -open set. $\{i, j = 1, 2; i \neq j\}$

Definition 1.10. [8]. Nonempty subsets A, B of an ideal bitopological space (X, τ_1, τ_2, I) , are called pairwise *-separated if $\tau_i Cl^*(A) \cap B = A \cap \tau_i Cl(B) = \phi$. {i , j = 1 , 2; i \neq j}

2. qpI- Connectedness in Ideal Bitopological Spaces

Definition 2.1. An ideal topological space (X, τ_1, τ_2, I) is called qpI- connected if X cannot be written as the disjoint union of a nonempty quasi open set and a nonempty qpI- open set.

Definition 2.2. Nonempty subset A, B of an ideal bitopological space (X, τ_1, τ_2, I) are called qpI-separated if $qCl(A) \cap B = A \cap qpICl(B) = \phi$.

Theorem 2.1. If A, B are -separated sets of an ideal bitopological space (X, τ_1, τ_2, I) and $A \cup B \in \tau_1 \cap \tau_2$ then A is qpI- open and B is quasi open.

Proof: Since A and B are qpI-separated in X, then $B = (A \cup B) \cap (X - qCl(A))$. Since $A \cup B$ is biopen and qCl(A) is quasi closed in X, B is quasi open in X. Similarly $A = (A \cup B) \cap (X - qpICl(B))$ and we obtain that A is qpI-open in X.

Theorem 2.2. Let (X, τ_1, τ_2, I) be an ideal bitopological space and A, B \subset Y \subset X. Then A and B are qpI-separated in Y if and only if A, B are qpI-separated in X.

Proof: It follows from $qCl(A) \cap B = A \cap qpICl(B) = \phi$ and the fact that A, $B \subset Y \subset X$.

Theorem 2.3. If f: $(X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is a qpI-continuous onto mapping. Then if $(X, \sigma_1, \sigma_2, I)$ is a qpI-connected ideal bitopological space (Y, σ_1, σ_2) is also quasi connected.

Proof: It is known that connectedness is preserved by continuous surjections. Hence every qp**I**-open set is also quasi open. Hence, qpI-connected space is also quasi connected.

Definition 2.3. A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is called qpI-s-connected if A is not the union of two nonempty qpI-separated sets in (X, τ_1, τ_2, I) .

Theorem 2.4. Let Y be a biopen subset of an ideal bitopological space (X, τ_1, τ_2, I) The following are equivalent:

- i. Y is qpI-s-connected in (X, τ_1, τ_2, I)
- ii. Y is qpI- connected in (X, τ_1, τ_2, I) .

Proof: i) \Rightarrow ii) Let Y be qpI-s-connected in (X, τ_1, τ_2, I) and suppose that Y is not qpI-connected in (X, τ_1, τ_2, I) . There exist non empty disjoint quasi open set A, in Y and qpI- open set B in Y s.t Y = A \cup B. Since Y is biopen in X and A and B are quasi open and qpI- open in X respectively and A and B are disjoint, then qCl(A) \cap B = \emptyset = A \cap qpICl(B). This implies that A, B are qpI-separated sets in X. Thus, Y is not qpI-s-connected in (X, τ_1, τ_2, I) . Hence we arrive at a contradiction and Y is qpI- connected in (X, τ_1, τ_2, I) .

ii) \Rightarrow i) Suppose Y is qpI-connected in (X, τ_1, τ_2, I) and Y is not qpI-s-connected in (X, τ_1, τ_2, I) . There exist two qpI-separated sets A, B s.t Y = A \cup B. By Theorem 2.1, A and B are qpI-open and quasi open in Y respectively. Since Y is biopen in X, obviously A and B are qpI- open and quasi open in X respectively. Also Y is qpI-connected so Y cannot be written as the disjoint union of a nonempty quasi open set and a nonempty qpI- open set. This is a contradiction and Y is qpI-s-connected.

Theorem 2.5. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A is a qpI-s-connected set of X and H, G are qpI-separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof: Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $(A \cap G) \cap qCl(A \cap H) \subset G \cap qpICl(H) = \emptyset$. By similar reasoning, we have $(A \cap H) \cap qCl(A \cap G) \subset H \cap qpICl(G) = \emptyset$. If $A \cap H$ and $A \cap G$ are nonempty, then A is not qpI-s-connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that either $A \subset H$ or $A \subset G$.

Theorem 2.6. If A is a qpI-s-connected set of an ideal bitopological space (X, τ_1, τ_2, I) and $A \subset B \subset qCl(A) \cap qpICl(B)$ then B is qpI-s-connected.

Proof: The theorem can easily be proved by taking the contradiction.

Theorem 2.7. If $\{M_i: i \in I\}$ is a nonempty family of qpI-s-connected sets of an ideal bitopological space (X, τ_1, τ_2, I) with $\bigcap_{i \in I} Mi \neq \emptyset$ Then $\bigcap_{i \in I} Mi$ is qpI-s-connected.

Proof: Suppose that $_{i\in I}^{\cup}Mi$ is not qpI-s-connected. Then we have $_{i\in I}^{\cup}Mi=H\cup G$, where H and G are qpI-separated sets in X. Since $_{i\in I}^{\cap}Mi\neq \emptyset$ we have a point x in $_{i\in I}^{\cap}Mi$. Since $x\in _{i\in I}^{\cup}Mi$, either x ϵ H or x ϵ G. Suppose that x ϵ H. Since x ϵ M $_i$ for each i ϵ I, then M $_i$ and H intersect for each i ϵ I. By theorem 2.5: M $_i$ H or M $_i$ G. Since H and G are disjoint, M $_i$ H for all i ϵ I and hence $_{i\in I}^{\cup}Mi$ H. This implies that G is empty. This is a contradiction. Suppose that x ϵ G. By similar way, we have that H is empty which is a contradiction. Thus, $_{i\in I}^{\cup}Mi$ is qpI-s-connected.

Theorem 2.8. Suppose that $\{M_n: n \in N\}$ is an infinite sequence of qpI-connected open sets of an ideal space $(X, \boldsymbol{\tau_i}, \boldsymbol{\tau_2}, I)$ and $M_n \cap M_{n+1 \neq} \varphi$ for each $n \in N$. Then $\bigcup_{i \in I} M_i$ is qpI-s-connected. **Proof:** By induction and Theorems 2.4 and 2.7, the set $P_n = \bigcup_{k \leq n} M_k$ is a qpI-connected open set for each $n \in N$. Also, P_n has a nonempty intersection. Thus $\bigcap_{i \in N} M_i$ is qpI-connected.

Definition 2.4. Let X be an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. The union of all qpI-sconnected subsets of X containing x is called the qpI-component of X containing x.

Theorem 2.9. Each qpI-component of an ideal bitopological space (X, τ_1, τ_2, I) is a maximal qpI-s connected set of X.

Proof: Obvious.

Theorem 2.10. The set of all distinct qpI-components of an ideal bitopological space (X, τ_1, τ_2, I) forms a partition of X.

Proof: Let A and B be two distinct qpI-components of an ideal bitopological space (X, τ_1, τ_2, I) containing x and y respectively $\{x \neq y\}$. Suppose that A and B intersect. Then, by Theorem 2.7, $A \cup B$ is qpI-s-connected in X. Also, A, $B \subseteq A \cup B$, so A, B are not maximal and thus A, B are disjoint. Hence they partition X. by induction it can easily be proved that the set of all distinct qpI-components of X forms a partition of X.

Theorem 2.11. Each qpI- component of an ideal bitopological space (X, τ_1, τ_2, I) is qpI-closed in X. **Proof:** Let A be a qpI-component of X. Therefore qpCl(A) is qpI-s-connected and A = qpCl (A). Thus, A is qpI-closed in X.

References

- 1. M. C. Datta. "Contributions to the theory of bitopological spaces". Ph.D. Thesis, B.I.T.S. Pilani, India. (1971).
- 2. J. Dontchev, M. Ganster and D. Rose. "Ideal resolvability". Topology and its Application, 93 (1999): pp. 1-16.
- 3. E. Ekici and T. Noiri. "Connectedness in ideal topological spaces". Novi Sad J. Math., Vol. 38. No. 2 (2008): pp. 65-70.
- 4. S. Jafari and N. Rajesh. "On qI- open sets in ideal bitopological spaces". University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, Vol. 20. No.2 (2010): pp. 29-38.
- 5. D. Jankovic and T. R. Hamlett. "Compatible extensions of ideals". Boll. Un. Mat. tal., (7) 6-B. (1992): pp. 453-465.
- 6. J.C. Kelly. "Bitopological spaces". Proc. London Math. Soc., 13. (1963): pp. 71-89.
- 7. M. Kar and S. S. Thakur. "Quasi pre local functions in ideal bitopological spaces". Book: Proceedings of the International Conference on Mathematical Modeling and Soft Computing 2012, Vol. 02. (2012): pp. 143-150
- 8. M. Kar and S. S. Thakur. "Connectedness in ideal bitopological spaces". Int. Journal of Engineering Research and Applications, Vol. 4. Issue 1(Version 1) (2014): pp. 165-167.
- 9. M. Kar and S. S. Thakur. "Pair wise Open Sets in Ideal Bitopological Spaces". Int. Jr. of Mathematical Sciences & Applications Vol. 2. No. 2 (2012): pp. 839-842.
- 10. M. Kar and S. S. Thakur. "qI- connectedness in ideal bitopological spaces". "submitted for publication".
- 11. K. Kuratowski. "Topology". Vol. I. New York: Academic Press. (1966).
- 12. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb. "On precontinuous and weak precontinuous mappings". Proc. Math. Phys. Soc. Egypt., 53 (1982): pp. 47-53
- 13. A. A. Nasef and R. A. Mahmoud. "Some applications via fuzzy ideals". Chaos, Solitons and Fractals 13. (2002): pp. 825-831.
- 14. U. D. Tapi, S. S. Thakur and Alok Sonwalkar. "Quasi preopen sets". Indian Acad. Math., Vol. 17. No.1 (1995): pp. 8-12
- 15. R. Vaidyanathaswamy. "The localisation theory in set topology". Proc. Indian Acad. Sci. 20. (1945): pp. 51-61.
