STRONG FORM OF GENERALIZED CLOSED SETS IN N-TOPOLOGY

M.Lellis Thivagar

School of Mathematics, Madurai Kamaraj University, Madurai- 625021

V.Antony Samy

School of Mathematics, Madurai Kamaraj University, Madurai- 625021

M.Arockia Dasan

School of Mathematics, Madurai Kamaraj University, Madurai- 625021

Abstract: The motive of this research topic is to introduce and evolve another innovative class of sets namely $N\tau\theta$ -closed sets defined in terms of $N\tau\theta$ -closure which are stronger than the class of $N\tau$ -open sets. Further the idea of $N\tau\theta$ -open sets is extended to induce and investigate $N\tau\theta$ -interior. **2010 MSC:** 54A05, 54A10.

Keywords: N -topology, $N\tau$ -open sets, $N\tau\theta$ -closed sets, $N\tau\theta$ -closure, $N\tau\theta$ -interior.

Introduction: Topology is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects such as deformations that involve stretching, but not tearing or gluing. In 1963, J.C. Kelly [2] established the important concept of bitopological space ie, a non-empty set X equipped with two arbitrary topologies τ_1 , τ_2 . Lellis Thivagar et al.[3] went beyond imagination by introducing and establishing the concept of N-topological space, namely a non-empty set X together with N arbitrary topologies. He also investigated the general formula to determine the N-topological open sets. The concept of θ -open, θ -closed, θ -interior and θ -closure were introduced by Velicko [5] to study the class of H-closed spaces. Later, Noiri [4] and Jafari [1] obtained several new and interesting results related to these sets.

In this article we want to introduce and develop yet another innovative class of sets namely $N\tau\theta$ -closed sets defined in terms of $N\tau\theta$ -closure which are stronger than the class of $N\tau$ -open sets. Also we introduce the notion of $N\tau\theta$ -open sets and investigate $N\tau\theta$ -interior.

Preliminaries: In this section we discuss some basic properties of N -topological spaces that are useful in the sequel. By a space $(X, N\tau)$, we mean a N -topological space on X in which no separation axioms are assumed unless explicitly stated.

Definition 2.1 [3] Let X be a non empty set and au_1 , au_2 , ..., au_N be N -arbitrary topologies defined on

X . The collection $N\tau = \{S \subseteq X : S = (\bigcup_{i=1}^N A_i) \cup (\bigcap_{i=1}^N B_i), A_i, B_i \in \tau_i\}$ is called a N -topology on X if the following axioms are satisfied:

1. $X, \emptyset \in N\tau$.

2.
$$\bigcup_{i=1}^{\infty} S_i \in N\tau \text{ for all } \{S_i\}_{i=1}^{\infty} \in N\tau.$$

3.
$$\bigcap_{i=1}^n S_i \in N\tau \text{ for all } \{S_i\}_{i=1}^n \in N\tau.$$

Then $(X,N\tau)$ is called a N-topological space on X. The elements of $N\tau$ are known as $N\tau$ -open sets on X and its complement is called as $N\tau$ -closed on X. We denote $N\tau O(X,x)$ as the set of all $N\tau$ -open sets containing x on X. The set of all $N\tau$ -open sets and the set of all $N\tau$ -closed sets on X are denoted by $X\tau O(X)$ and $X\tau O(X)$ respectively.

Definition 2.2 [3] The interior and closure of a subset A of $(X, N\tau)$ are respectively defined as

- 1. $N\tau$ $int(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } N\tau \text{-open}\}.$
- 2. $N\tau cl(A) = \bigcap \{F : A \subseteq F \text{ and F is } N\tau \text{-closed}\}.$

Theorem 2.3 [3] Let $(X, N\tau)$ be a N -topological space on X and let $A, B \subseteq X$. Then

- 1. $N\tau$ cl(A) is the smallest $N\tau$
 - -closed set containing A .
- 2. A is $N\tau$ -closed if and only if $N\tau$ cl(A) = A .In particular,

$$N\tau - cl(\varnothing) = \varnothing$$
 and $N\tau - cl(X) = X$.

- 3. $A \subseteq B \Rightarrow N\tau cl(A) \subseteq N\tau cl(B)$.
- 4. $N\tau cl(A \cup B) = N\tau cl(A) \cup N\tau cl(B)$
- 5. $N\tau cl(A \cap B) \subseteq N\tau cl(A) \cap N\tau cl(B)$.
- 6. $N\tau cl(N\tau cl(A)) = N\tau cl(A)$.

Theorem 2.4 [3] Let $(X, N\tau)$ be a N-topological space on X and $A \subseteq X$. Then $x \in N\tau - cl(A)$ if and only if $G \cap A \neq \emptyset$ for every $N\tau$ -open set G containing x.

Theorem 2.5 [3] Let $(X, N\tau)$ be a N -topological space on X and $A \subseteq X$. Then

- 1. $N\tau int(X A) = X N\tau cl(A)$.
- 2. $N\tau int(A) \supseteq \tau_1 int(A) \cup \tau_2 int(A) \cup ... \cup \tau_N int(A)$.
- 3. $N\tau cl(X A) = X N\tau int(A)$.
- 4. $N\tau cl(A) \subset \tau_1 cl(A) \cap \tau_2 cl(A) \cap ... \cap \tau_N cl(A)$.

 θ -Closed Sets in N-Topological Spaces: In this section we introduce θ -open and θ -closed sets in N-topological space and establish their relationships with suitable examples.

Definition 3.1 Let $(X,N\tau)$ be a N-topological space on X and $A\subseteq X$. An element $x\in X$ is said to be $N\tau$ - θ cluster point of A if $A\cap N\tau$ - $cl(G)\neq\varnothing$ for every $N\tau$ -open set G containing x. The set of all $N\tau$ - θ -cluster points of A is called $N\tau$ - θ closure of A and is denoted by $N\tau$ - $cl_{\theta}(A)$. A subset A of X is said to be $N\tau\theta$ -closed in X if $N\tau$ - $cl_{\theta}(A)=A$ and its complement is called $N\tau\theta$ -open.

Example 3.2 Let N=2, $X=\{a,b,c\}$, consider $\tau_1O(X)=\{\varnothing,X,\{a\}\}$ and $\tau_2O(X)=\{\varnothing,X,\{b,c\}\}$. Then $2\tau O(X)=\{\varnothing,X,\{a\},\{b,c\}\}$ is a bitopology and if $A=\{b,c\}$, then $2\tau-cl_\theta(A)=\{b,c\}=A$. Hence A is $2\tau\theta$ -closed and the complement set $\{a\}$ is $2\tau\theta$ -open.

Theorem 3.3 $A \subseteq N\tau - cl_{\theta}(A)$, for any subset A of $(X, N\tau)$.

Proof: If $x \in A$ and G is a $N\tau$ -open set containing x, then $G \subseteq N\tau - cl(G)$ and hence $x \in N\tau - cl(G)$. Thus $x \in A \cap N\tau - cl(G)$ and therefore, $A \cap N\tau - cl(G) \neq \emptyset$ for every $N\tau$ -open set G containing x. Hence $x \in N\tau - cl_{\theta}(G)$. That is $A \subseteq N\tau - cl_{\theta}(A)$.

Theorem 3.4 $N\tau - cl(A) \subseteq N\tau - cl_{\theta}(A)$, for any subset A of $(X, N\tau)$.

Proof: If $x \in N\tau - cl(A)$, then $G \cap A \neq \emptyset$ for every $N\tau$ -open set G containing x. Since $G \subseteq N\tau - cl(G)$, $G \cap A \subseteq N\tau - cl(G) \cap A$ and hence $N\tau - cl(G) \cap A \neq \emptyset$. Therefore $x \in N\tau - cl_{\theta}(A)$. Thus, $N\tau - cl(A) \subseteq N\tau - cl_{\theta}(A)$.

Remark 3.5 $N\tau - cl(A) \neq N\tau - cl_{\theta}(A)$. For example, let N=3, $X=\{a,b,c\}$, consider $\tau_1 O(X) = \{\varnothing, X, \{a\}\}$, $\tau_2 O(X) = \{\varnothing, X, \{a,c\}\}$, $\tau_3 O(X) = \{\varnothing, X\}$. Then $3\tau O(X) = \{\varnothing, X, \{a\}, \{a,c\}\}$ is a tritopology and if $A=\{c\}$, then $3\tau - cl(A) = \{b,c\}$ and $3\tau - cl_{\theta}(A) = X$. Hence $3\tau - cl(A) \neq 3\tau - cl_{\theta}(A)$.

Theorem 3.6 If A is $N\tau$ -open set in a N-topological space $(X,N\tau)$, then $N\tau - cl(A) = N\tau - cl_{\theta}(A)$ **Proof:** Let A be $N\tau$ -open set in X. We know that $N\tau - cl(A) \subseteq N\tau - cl_{\theta}(A)$. Let $x \in N\tau - cl_{\theta}(A)$, then $A \cap N\tau - cl(G) \neq \emptyset$ for every $N\tau$ -open set G containing x. If $A \cap G = \emptyset$, $G \subseteq A^c$. Since A is $N\tau$ -open, A^c is $N\tau$ -closed. That is A^c is $N\tau$ -closed set containing G. But $N\tau - cl(G)$ is the smallest $N\tau$ -closed set containing G. Therefore, $N\tau - cl(G) \subseteq A^c$. Thus, $A \cap N\tau - cl(G) = \emptyset$ which is a contradiction. Therefore $A \cap G \neq \emptyset$ for every $N\tau$ -open set G containing x. That is $x \in N\tau - cl(A)$. Therefore, $N\tau - cl(A) \supseteq N\tau - cl_{\theta}(A)$. Hence $N\tau - cl(A) = N\tau - cl_{\theta}(A)$.

Theorem 3.7 $N\tau - cl_{\theta}(A) \subseteq N\tau - cl_{\theta}(N\tau - cl_{\theta}(A))$, for any subset A of $(X, N\tau)$.

Proof: Proof follows from theorem 3.3 replacing A by $N\tau$ - $cl_{\theta}(A)$.

Theorem 3.9 $N\tau$ - $cl_{\theta}(A)$ is $N\tau$ -closed, for any subset A of X.

Proof: We know that $N\tau - cl_{\theta}(A) \subseteq N\tau - cl(N\tau - cl_{\theta}(A))$ and it is enough to prove $N\tau - cl(N\tau - cl_{\theta}(A)) \subseteq N\tau - cl_{\theta}(A)$. Let $x \in N\tau - cl(N\tau - cl_{\theta}(A))$, then $N\tau - cl_{\theta}(A) \cap G \neq \emptyset$ for every $N\tau - cl_{\theta}(A) \cap G$ so that $x \in N\tau - cl_{\theta}(A) \cap G$, then $y \in G$ and $y \in N\tau - cl_{\theta}(A)$. Since G is $N\tau$ -open set containing y and $y \in N\tau - cl_{\theta}(A)$, $A \cap N\tau - cl(G) \neq \emptyset$. Therefore, $x \in N\tau - cl_{\theta}(A)$ and so $N\tau - cl_{\theta}(A)$ is $N\tau$ -closed.

Theorem 3.10 Every $N\tau\theta$ -closed set is $N\tau$ -closed.

Proof: Since $N\tau - cl_{\theta}(A) = A$ and $N\tau - cl_{\theta}(A)$ is $N\tau$ -closed, then A is $N\tau$ -closed.

Theorem 3.11 For subsets A and B of a topological space $(X, N\tau)$.

- 1. $A \subseteq B \Rightarrow N\tau cl_{\theta}(A) \subseteq N\tau cl_{\theta}(B)$.
- 2. $N\tau cl_{\theta}(A \cup B) = N\tau cl_{\theta}(A) \cup N\tau cl_{\theta}(B)$.
- 3. $N\tau cl_{\theta}(A \cap B) \subseteq N\tau cl_{\theta}(A) \cap N\tau cl_{\theta}(B)$.

Proof: 1. If $A \subseteq B$ and $x \in N\tau - cl_{\theta}(A)$, $A \cap N\tau - cl(G) \neq \emptyset$ for every $N\tau$ -open set G containing x. Since $A \cap N\tau - cl(G) \subseteq B \cap N\tau - cl(G)$, $B \cap N\tau - cl(G) \neq \emptyset$ for every $N\tau$ -open set G containing x and hence $x \in N\tau - cl_{\theta}(B)$. Thus, $N\tau - cl_{\theta}(A) \subseteq N\tau - cl_{\theta}(B)$.

2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, using (i), $N\tau \cdot cl_{\theta}(A) \subseteq N\tau \cdot cl_{\theta}(A \cup B)$ and $N\tau \cdot cl_{\theta}(B) \subseteq N\tau \cdot cl_{\theta}(A \cup B)$. Therefore, $N\tau \cdot cl_{\theta}(A) \cup N\tau \cdot cl_{\theta}(B) \subseteq N\tau \cdot cl_{\theta}(A \cup B)$. On the other hand, if $x \in N\tau \cdot cl_{\theta}(A \cup B)$, then $(A \cup B) \cap (N\tau \cdot cl(G)) \neq \emptyset$ for every $N\tau$ -open set G containing x. That is, $[A \cap N\tau \cdot cl(G)] \cup [B \cap N\tau \cdot cl(G)] \neq \emptyset$ and therefore, $A \cap N\tau \cdot cl(G) \neq \emptyset$ or $A \cap N\tau \cdot cl(G) \neq \emptyset$. That is, $x \in N\tau \cdot cl_{\theta}(A)$ or $x \in N\tau \cdot cl_{\theta}(B)$ and hence, $x \in N\tau \cdot cl_{\theta}(A) \cup N\tau \cdot cl_{\theta}(B)$. Thus, $N\tau \cdot cl_{\theta}(A \cup B) \subseteq N\tau \cdot cl_{\theta}(A) \cup N\tau \cdot cl_{\theta}(B)$. Hence $N\tau \cdot cl_{\theta}(A \cup B) = N\tau \cdot cl_{\theta}(A) \cup N\tau \cdot cl_{\theta}(B)$.

3. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, from (i), $N\tau - cl_{\theta}(A \cap B) \subseteq N\tau - cl_{\theta}(A)$ and $N\tau - cl_{\theta}(A \cap B) \subseteq N\tau - cl_{\theta}(B)$. Therefore, $N\tau - cl_{\theta}(A \cap B) \subseteq N\tau - cl_{\theta}(A) \cap N\tau - cl_{\theta}(B)$

Example 3.12 Let $X = \{a,b,c,d\}$, then $\tau_1O(X) = \{\emptyset,X,\{a\}\}$, $\tau_2O(X) = \{\emptyset,X,\{b,d\}\}$, $\tau_3O(X) = \{\emptyset,X,\{a,b,d\}\}$. Then $3\tau O(X) = \{\emptyset,X,\{a\},\{a,b,d\},\{b,d\}\}$ is a tritopology. Let $A = \{a,b\}$ and $B = \{a,c\}$ Then $3\tau - cl_\theta(A) = X$ and $3\tau - cl_\theta(B) = X$. Therefore, $3\tau - cl_\theta(A \cap 3\tau - cl_\theta(B)) = X$. But $3\tau - cl_\theta(A \cap B) = 3\tau - cl_\theta(\{a\}) = \{a,c\}$. Therefore $3\tau - cl_\theta(A \cap B) \neq 3\tau - cl_\theta(A) \cap 3\tau - cl_\theta(B)$. That is equality does not hold in (3) of previous theorem.

Corollary 3.13 If A and B are $N\tau\theta$ -closed, then $A\cup B$ is $N\tau\theta$ -closed.

Proof: $N\tau - cl_{\theta}(A) = A$ and $N\tau - cl_{\theta}(B) = B$, since A and B are $N\tau\theta$ -closed. Therefore $N\tau - cl_{\theta}(A \cup B) = N\tau - cl_{\theta}(A) \cup N\tau - cl_{\theta}(B) = A \cup B$ and hence, $A \cup B$ is $N\tau\theta$ -closed.

Corollary 3.14 If A and B are $N\tau\theta$ -closed, then $A\cap B$ is $N\tau\theta$ -closed.

Proof: $N\tau - cl_{\theta}(A) = A$ and $N\tau - cl_{\theta}(B) = B$, since A and B are $N\tau\theta$ -closed. Therefore $N\tau - cl_{\theta}(A \cap B) \subseteq N\tau - cl_{\theta}(A) \cap N\tau - cl_{\theta}(B) = A \cap B$ and hence, $A \cap B$ is $N\tau\theta$ -closed.

Remark 3.15 From the above two corollaries it is very clear that $N\tau\theta$ -closed sets form a topology.

Theorem 3.16 Every $N\tau\theta$ -open set is $N\tau$ -open in a N-topological space.

Proof: If A is a $N\tau\theta$ -open in $(X,N\tau)$, then X-A is $N\tau\theta$ -closed. If $x\in N\tau$ -cl(X-A), $x\in N\tau$ - $cl_{\theta}(X-A)$, since $N\tau$ - $cl(X-A)\subseteq N\tau$ - $cl_{\theta}(X-A)$. But $N\tau$ - $cl_{\theta}(X-A)=X-A$. Therefore, $x\in X-A$. Thus, $x\in N\tau$ - $cl(X-A)\Longrightarrow x\in X-A$. Therefore, $N\tau$ - $cl(X-A)\subseteq X-A$. But $X-A\subseteq N\tau$ -cl(X-A). Hence, $N\tau$ -cl(X-A)=X-A. That is, X-A is $N\tau$ -closed and A is $N\tau$ -open in X. Thus any $N\tau\theta$ -open set is $N\tau$ -open. That is the $N\tau\theta$ -open sets is stronger than the $N\tau$ -open sets.

Remark 3.17 The converse of the above theorem need not be true. For example, N =4, $X = \{a,b,c,d,\}$, then $\tau_1 O(X) = \{\varnothing,X,\{a\}\}$, $\tau_2 O(X) = \{\varnothing,X,\{b\}\}$, $\tau_3 O(X) = \{\varnothing,X,\{a,b\}\}$ and $\tau_4 O(X) = \{\varnothing,X,\{c\}\}$. Then $4\tau O(X) = \{\varnothing,X,\{b,d\}\}$ is a 4-topology. Let $A = \{b,d\}$ is 4τ open in X. But $X - A = \{a,c\}$; $4\tau - cl_\theta(X-A) = X$ and hence X - A is not $4\tau\theta$ -closed. Therefore, A is not $4\tau\theta$ -open in X.

 θ -interior in N-Topological Spaces: In this section we derive θ -interior operator in N-topology and also establish its properties.

Definition 4.1 Let $A \subseteq (X, N\tau)$ then an element $x \in A$ is said to be a $N\tau\theta$ -interior point of A if $N\tau - cl(G) \subseteq A$ for some $N\tau$ -open set G containing x. The set of all $N\tau\theta$ -interior points of A is called the $N\tau\theta$ -interior of A and is denoted by $N\tau$ - $int_{\theta}(A)$.

Example 4.2 Let $X = \{a,b,c,d,e\}$ and N = 3, then $\tau_1 O(X) = \{\emptyset,X,\{c\}\}$, $\tau_2 O(X) = \{\emptyset,X,\{a,b\}\}$ and $\tau_3 O(X) = \{\emptyset,X,\{a,b,c\}\}$. Then $3\tau O(X) = \{\emptyset,X,\{c\},\{a,b\},\{a,b,c\}\}$ is a tritopology. Let $A = \{c,d,e\}$. The element c is $3\tau\theta$ interior point of A, since $\{c\}$ is a 3τ -open set containing c and $3\tau - cl(\{c\}) = \{c,d,e\} \subseteq A$. The element d is not $3\tau\theta$ -interior point of A, since X is the only 3τ -open set containing d and $3\tau - cl(X) = XUA$. Similarly the element e is not $3\tau\theta$ -interior point of A. Thus, $3\tau - int_{\theta}(A) = \{c\}$.

Theorem 4.3 $N\tau - int_{\theta}(A) \subseteq N\tau - int(A)$ for any $A \subseteq (X, N\tau)$.

Proof: If $x \in N\tau - int_{\theta}(A)$ then $N\tau - cl(G) \subseteq A$ for some $N\tau$ -open set G containing x. Also $G \subseteq N\tau - cl(G) \subseteq A$. Thus, G is a $N\tau$ -open subset A containing x such that $G \subseteq A$. Therefore, $x \in N\tau - int(A)$, since $N\tau - int(A)$ is the largest $N\tau$ -open subset A. Thus, $N\tau - int_{\theta}(A) \subseteq N\tau - int(A)$.

Theorem 4.4 In a $N\tau$ topological space $(X, N\tau)$,

- 1. $X N\tau int_{\theta}(A) = N\tau cl_{\theta}(X A)$.
- 2. $X-N\tau-cl_{\theta}(A)=N\tau-int_{\theta}(X-A)$. **Proof:** 1. $x\in X-N\tau-int_{\theta}(A)$ if and only if $x\notin N\tau-int_{\theta}(A)$ if and only if $N\tau-cl(G) \dot{\mathbf{U}} A$ for every $N\tau$ -open set G containing x iff $N\tau-cl(G)\cap (X-A)\neq \emptyset$ for every $N\tau$ -open set G containing x if and only if $x\in N\tau-cl_{\theta}(X-A)$. Thus, $X-N\tau-int_{\theta}(A)=N\tau-cl_{\theta}(X-A)$.
- 2. Proof is similar to that of (1).

Theorem 4.5 If $A, B \subset (X, N\tau)$, then

- 1. $N\tau int_{\theta}(A) \subseteq A$.
- 2. $N\tau int_{\theta}(A) = \bigcup \{G : G \text{ is } N\tau \text{-open} \}$ and $N\tau - cl(G) \subseteq A\}$.
- 3. *A* is $N\tau\theta$ -open if and only if $A = N\tau$ $int_{\theta}(A)$.
- 4. $A \subseteq B \Rightarrow N\tau int_{\theta}(A) \subseteq N\tau int_{\theta}(B)$.

- 5. $N\tau int_{\theta}(N\tau int_{\theta}(A)) \subseteq N\tau int_{\theta}(A)$.
- 6. $N\tau int_{\theta}(A) \cup N\tau int_{\theta}(B) \subseteq N\tau int_{\theta}(A \cup B)$.
- 7. $N\tau int_{\theta}(A \cap B) = N\tau int_{\theta}(A) \cap N\tau int_{\theta}(B)$.

Proof: 1. $N\tau - int_{\theta}(A) \subseteq N\tau - int(A) \subseteq A$ and hence $N\tau - int_{\theta}(A) \subseteq A$.

- 2. $x \in N\tau int_{\theta}(A)$ if and only if $N\tau cl(G) \subseteq A$ for some $N\tau$ -open set G containing x if and only if $x \in \bigcup \{G : G \text{ is } N\tau \text{ -open containing } x \text{ and } N\tau cl(G) \subseteq A\}$. Thus $N\tau int_{\theta}(A) = \bigcup \{G : G \text{ is } N\tau \text{ -open and } N\tau cl(G) \subseteq A\}$.
- 3. A is $N\tau\theta$ -open if and only if X-A is $N\tau\theta$ -closed if and only if $N\tau$ $cl_{\theta}(X-A)=X-A$ if and only if $X-N\tau$ $int_{\theta}(A)=X-A$ if and only if $N\tau$ $int_{\theta}(A)=A$.
- 4. if $A \subseteq B$ and $x \in N\tau int_{\theta}(A)$, then $N\tau cl(G) \subseteq A \subseteq B$ for some $N\tau$ -open set G containing x and hence $x \in N\tau int_{\theta}(B)$. Therefore, $N\tau int_{\theta}(A) \subseteq N\tau int_{\theta}(B)$.
- 5. Since $N\tau int_{\theta}(A) \subseteq A$, by (4), $N\tau int_{\theta}(N\tau int_{\theta}(A) \subseteq N\tau int_{\theta}(A)$
- 6. Since, $A, B \subseteq A \cup B$, by (4), $N\tau int_{\theta}(A) \cup N\tau int_{\theta}(B) \subseteq N\tau int_{\theta}(A \cup B)$.
- 7. Since $X N\tau int_{\theta}(A \cap B) = N\tau cl_{\theta}(X A \cap B)$, $N\tau int_{\theta}(A \cap B) = N\tau int_{\theta}(A) \cap N\tau int_{\theta}(B)$.

Remark 4.6 Equality does not hold in (i) and (6). Let $X = \{a,b,c,d\}$ and N = 2, then $\tau_1 O(X) = \{\emptyset, X, \{a\}, \{b,d\}\}$ and $\tau_2 O(X) = \{\emptyset, X, \{a,b,d\}\}$. Then $2\tau O(X) = \{\emptyset, X, \{a\}, \{b,d\}, \{a,b,d\}\}$ is a bitopology. Let $A = \{a,b,c\}$ and $B = \{b,c,d\}$. Then $2\tau - int_{\theta}(A) = \{a\}$ and $2\tau - int_{\theta}(B) = \{b,d\}$. Therefore, $2\tau - int_{\theta}(A) \cup 2\tau - int_{\theta}(B) = \{a,b,d\}$, but $2\tau - int_{\theta}(A \cup B) = X$. That is, $2\tau - int_{\theta}(A \cup B) \neq 2\tau - int_{\theta}(A) \cup 2\tau - int_{\theta}(B)$. Also $A \neq 2\tau - int_{\theta}(A)$.

Theorem 4.7 If $N\tau\theta O(X)$ denotes the set of all $N\tau\theta$ -open sets in $(X,N\tau)$, then $N\tau\theta O(X)$ is a topology on X.

Proof:

- 1. Since \emptyset and X are $N\tau\theta$ -closed, they are $N\tau\theta$ -open and hence \emptyset and $X \in N\tau\theta O(X)$.
- 2. If $A_i \in N\tau\theta O(X)$, then each A_i is $N\tau\theta$ -open in X and hence $N\tau int_{\theta}(A_i) = A_i$ for each i. Let $A = \bigcup_i A_i$. Consider $N\tau int_{\theta}(A) = N\tau int_{\theta}(\bigcup_i A_i) \supseteq \bigcup_i N\tau int_{\theta}(A_i \bigcup_i A_i = A$. That is $A \subseteq N\tau int_{\theta}(A)$. But $N\tau int_{\theta}(A) \subseteq A$. Therefore $N\tau int_{\theta}(A) = A$. Thus A is $N\tau\theta$ -open. Thus arbitrary union of members of $N\tau\theta O(X)$ belong to $N\tau\theta O(X)$.
- 3. Let A and $B \in N\tau\theta O(X)$. Then A,B are $N\tau\theta$ -open and hence $N\tau$ - $int_{\theta}(A) = A$ and $N\tau$ - $int_{\theta}(B) = B$. Consider $N\tau$ - $int_{\theta}(A \cap B) = N\tau$ - $int_{\theta}(A) \cap N\tau$ - $int_{\theta}(B) = A \cap B$ and therefore, $A \cap B$ is $N\tau\theta$ -open. That is, $A \cap B \in N\tau\theta O(X)$ whenever $A,B \in N\tau\theta O(X)$. Thus $N\tau\theta O(X)$ is a topology on X

Remark 4.8 Since any $N\tau\theta$ -open set is $N\tau\theta$ -open, $N\tau\theta O(X) \subseteq N\tau O(X)$ and hence $N\tau\theta O(X)$ is stronger than $N\tau O(X)$.

Theorem 4.9 If $N\tau O(X) = \{X,\varnothing\}$ then $N\tau - int_{\theta}(A) = \varnothing$ for every proper subset A of $X.Proof: Let \ A \subset X$ and $x \in A$. Since any $N\tau$ -open set containing x is X and $N\tau - cl(X) = X\dot{\mathsf{U}}A$, x is not a $N\tau\theta$ -interior point of A. That is no element of A is a $N\tau\theta$ -interior point of itself. Therefore, $N\tau - int_{\theta}(A) = \varnothing$ for every $A \subset X$.

Conclusion: Having been defined the strong form of generalized closed sets in N-topology in terms of $N\tau\theta$ -closure we see that this can be extended to other areas like neutrosophic, digital, fuzzy sets etc. To add strength to this theory we also have illustrated a few examples here. Further we hope that this concept can pave way to many other research fields.

References:

- 1. S.Jafari, Some properties of quasi-continuous functions*, Far East J. Math. Sci, vol. 6, 1998, pp. 689-606.
- 2. J.C.Kelly, Bitopological spaces, Proceedings London Mathematical Society, vol. 3, 1963, pp. 71-89.
- 3. M.Lellis Thivagar, V.Ramesh and M.Arockia Dasan, On new structure of N-topology, Cogent Mathematics (Taylor and Francis), vol. 3, 2016. UGC J.No: 48730.
- 4. T.Noiri, Properties of continuous functions•, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur, vol. 58, 1975, pp. 887-891.
- 5. N.V. Velicko, H-closed topological spaces, Trans. Amer. Math. Soc., vol. 78, 1968, pp. 103-118.
