ON CYCLIC COMMUTATIVITY NEAR – RINGS

G.Gopalakrishnamoorthy

Advisor, PSNL College of Education, Sattur -626 203 ggrmoorthy@gmail.com

R.Veega

Asst.prof.in Mathematics, Dr.G.R.D.College of Education, Coimbatore -641 402 veegavivek@gmail.com

Dr.M.Kamaraj

Associate Professor in Mahtematics, Government Arts and Science College, Sivakasi-626 123.

Kamarajı 7366@gmail.com

Abstract: A right near – ring N is called weak commutative (Definition 9.4 Pilz [8]) if xyz = xzy for every $x,y,z \in N$. A right near – ring N is called pseudo commutative (Definition 2.1 [9]), if xyz = zyx for all $x,y,z \in N$. A right near – ring N is called quasi weak commutative ([4]), if xyz = yxz for every $x,y,z \in N$. It is quite natural to investigate the properties of a right near – ring N satisfying xyz = yzx for every $x,y,z \in N$. We call such a near –ring as cyclic commutative near – ring. We obtain some interesting results on cyclic commutative near – rings.

- **1. Introduction:** Throughout this paper, N denotes a right near –ring (N, +, .) with atleast two elements. For any non empty subset A of N, we denote $A \{0\} = A^*$. The following definitions and results are well known.
- **1.1 Definition:** An element $a \in N$ is said to be
- 1. Idempotent if $a^2 = a$.
- 2. Nilpotent, if there exists a positive integer k such that $a^k = 0$.
- **1.2 Result (Theorem 1.62 Pilz[7]):** Each near ring N is isomorphic to a subdirect product of subdirectly irreducible near rings.
- **1.3 Definition:** A near ring is said to be zero symmetric if ab = 0 implies ba = 0, where $a, b \in N$.
- 1.4 Result: If N is zero symmetric, then
- 1. Every left ideal A of N is an N subgroup of N.
- 2. Every ideal I of N satisfies the condition NIN \subseteq I. That is, every ideal is an N subgroup
- 3. $N^*I^*N^* \subseteq I^*$
- **1.5 Result:** Let N be a near ring. Then the following are true
- 1. If A is an ideal of N and B is any subset of N, then $(A: B) = \{ n \in \mathbb{N} \text{ such that } nB \subseteq A \}$ is always a left ideal.
- 2. If A is an ideal of N and B is an N sub group, then (A: B) is an ideal. In particular if A and B are ideals of a zero symmetric near ring, then (A: B) is an ideal.

1.6 Result:

- 1. Let N be a regular near ring, $a \in N$ and a = axa, then ax, xa are idempotents and so the set of idempotent elements of N is non empty.
- 2. axN = aN and Nxa = Na.
- 3. N is S and S' near rings.

- **1.7 Result (Lemma 4 Dheena [1]):** Let N be a zero symmetric reduced near ring. For any a, b \in N and for any idempotent element e \in N, abe = aeb.
- **1.8 Result (Gratzer [4] and Fain [3]):** A near ring N is sub directly irreducible if and only if the intersection of all non zero ideals of N is not zero.
- **1.9 Result (Gratzer** [4]): Each simple near ring is sub directly irreducible.
- **1.10 Result (Pilz**[7]): A non zero symmetric near ring N has IFP if and only if (0 : S) is an ideal for any subset S of N.
- **1.11 Result (Oswald [6]):** An N subgroup A of N is essential if $A \cap B = \{0\}$, where B is any subgroup of N, implies $B = \{0\}$.
- **1.12 Definition:** A near ring N is said to be reduced if N has no non zero nilpotent elements.
- **1.13 Definition:** A near ring N is said to be an integral near –ring, if N has no non zero divisiors.
- **1.14 Lemma:** Let N be a near ring. If for all $a \in N$, $a^2 = 0 \implies a = 0$, then N has no non zero nilpotent elements.
- **1.15 Definition:** Let N be anear ring . N is said to satisfy intersection of factors property (IFP) if $ab = 0 \implies anb = 0$ for all $n \in N$, where $a, b \in N$.

1.16 Definition:

- 1. An ideal I of N is called a prime ideal if for all ideals A, B of N, AB is subset of I \Rightarrow A is subset of I of B is subset of I.
- 2. I is called a semi prime ideal if for all ideals A of N, A² is subset of I implies A is subset of I.
- 3. I is called a completely semi prime ideal, if for any $x \in \mathbb{N}$, $x^2 \in \mathbb{I} \implies x \in \mathbb{I}$.
- 4. A completely prime ideal, if for any $x, y \in N$, $x, y \in I \implies x \in I$ or $y \in I$.
- 5. N is said to have strong IFP, if for all ideals I of N, a, b \in I implies an b \in I for all n \in N.
- **1.17 Result:** Let N be a Pseudo commutative near ring. Then every idempotent element is central.

2. Main Results

2.1 Theorem: Every cyclic commutative near –ring is zero symmetric.

Proof: Let N be a cyclic commutative right Near – ring.

```
Let a \in N be any element.

Now a. 0 = a. (0.0)

= (0.0)a (Cyclic Commutative)

= 0(0.a)

= 0.0

= 0
```

Thus N is zero symmetric.

- **2.2 Theorem:** Let N be a right near ring.
- (i) If N is both cyclic and weak commutative, then N is quasi weak commutative.
- (ii) If N is both cyclic and pseudo commutative, then N is weak commutative.
- (iii) If N is both Cyclic and quasi weak commutative, then N is pseudo commutative.

Proof:

(i) Let N be both cyclic and weak – commutative near – ring.

```
For all x, y, z \in N,

xyz = yzx (cyclic commutative)

= yxz (weak commutative)
```

This implies N is quasi weak commutative.

(ii) Let N be both cyclic and pseudo commutative.

```
For all x, y, z \in N,

xyz = yzx (cyclic commutative)

= xzy (pseudo commutative)
```

This implies N is weak commutative.

(iii) Let N be both cyclic and quasi weak commutative .

```
For all x, y, z \in N,

xyz = yzx (cyclic commutative)

= zyx
```

This implies N is pseudo commutative.

2.3 Theorem: Homomorphic image of a cyclic commutative near – ring is cyclic commutative.

Proof: Let N be a cyclic commutative right near – ring and $f: N \to M$ be an endomorphism of near – rings N and M.

```
For all x, y, z \in N,

f(x)f(y)f(z) = f(xyz)
= f(yzx)
= f(y)f(z)f(x)
```

So M is cyclic Commutative.

- **2.4 Corollary:** Let N be a cyclic commutative near ring .If I is any ideal of N, then $^{\rm N}\!/_{\rm I}$ is also cyclic commutative.
- **2.5 Theorem:** Every cyclic commutative near ring N is isomorphic to a sub direct product of sub directly irreducible cyclic commutative near rings.

Proof: By result 1.2, N is isomorphic to a sub – direct product of sub – directly irreducible near rings N_{α} each of which is homomorphic image of N under the projection map $\pi_{\alpha}: N \to N_{\alpha}$. The desired result follows from Theorem 2.3.

2.6 Theorem: Any weak Commutative near –ring with left identity is cyclic commutative.

Proof: Let $e \in N$ be a left identity

```
For all a, b, c \in N, abc = e(abc) = (eab)c
= (eba)c (weak commutative)
= bac
```

Therefore N is cyclic commutative.

2.7 Theorem: Any pseudo commutative near – ring with left identity is cyclic commutative.

Proof: Let $e \in N$ be a left identity

```
For all a, b, c \in N, abc = e(abc)
= (eab)c
= (bae)c (pseudo commutative)
= b(aec)
= b(cea) (pseudo commutative)
= (bc)(ea)
= bca
```

Therefore N is cyclic commutative.

- **2.8 Theorem:** Let N be a regular cyclic commutative near ring. Then
- (i) $A = \sqrt{A}$ for every N subgroup A of N.
- (ii) N is reduced.
- (iii) N has (IFP)

Proof: Let N be a regular cyclic commutative near –ring.

Since N is regular, for every $a \in N$, there exists $b \in N$ such that

```
a = aba
                    = baa
                                   (cyclic commutative)
                 a = b a^2
(i) Let A be a N – subgroup of N and let a \in \sqrt{A}. Then a^k \in A for some positive integer k. If a \in N
there exists b \in N such that a = ba^2
                 So,
                                         a = b(a)a
                                            = b(ba^2)a
                                           = b^2a^3
                                          = b^2(a)a^2
                                          = b^2(ba^2)a^2
                                          = b^3 a^4
                                       = b^{(k-1)}a^k \in N A which is a subset of A. So \sqrt{A} is a subset of A.
Always A is a subset of \sqrt{A}.
         Hence A = \sqrt{A}.
        This completes the proof of (i)
(ii) If a^2 = 0, then by (i) a = ba^2 = b. 0 = 0
        This completes the proof (ii)
(iii) Let a, b \in N such that ab = 0
        Then (ba)^2 = (ba)(ba) = b(ab)a
                      = b(0a) = b.0 = 0
         So, by (ii) ba = 0
         Thus ab = 0 implies ba = 0.
         Now for any n \in N,
                 (anb)^2 = (anb)(anb)
                          = (an)(ba)(nb)
                          = (an)0(nb)
                          = (an)0
                          = 0
         Again by (ii) anb = 0
        This proves (iii).
2.9 Theorem: Let N be a regular cyclic commutative near - ring. Then every N subgroup id an ideal and
N = Na = Na^2 = aN = aNa for all a \in N.
Proof: Let a \in N. Since N is regular there exists b \in N such that a = aba.
         Then by Result 1.6, (ba) is idempotent.
         Let ba = e. Then Ne = Nba = Na (by Result 1.6)
                                                                      ..... (1)
         Let S = \{ n - ne / n \in N \}.
         We claim that, (0: S) = Ne
         Now (n - ne)e = ne - ne^2 = ne - ne = 0 for all n \in N.
         So, (n - ne)Ne = 0 by (iii) of Theorem 2.8.
        This implies Ne \subseteq (0:S)
         Now, let y \in (0:S).
Then sy = 0 for all s \in S
                                                                      ..... (2)
         Since N is regular, y = yxy for some x \in N.
         Since yx - (yx)e \in S, (yx - (yx)e)y = 0 (by (2))
         That is, yxy - yxey = 0
                 y - (yx)(eey) = 0
                                                                     (e is idempotent)
                 y - (yx)(eye) = 0
                                                                     (cyclic commutativity)
                   y - y (xey) e = 0
```

y - y (eyx)e = 0

y - (yey)xe = 0

(cyclic commutativity)

```
y - (eyy)xe = 0
                                                                        (cyclic commutativity)
                      y - e(yyx)e = 0
                      y - e(yxy)e = 0
                                                                        (cyclic commutativity)
                             y - eye = 0
                              y - yee = 0
                                                                (cyclic commutativity)
                                y - ye = 0
         That is, y = ye \in Ne
         It follows that (0:S) \subseteq Ne
         Thus (0:S) = Ne.
         By Result 1.10, Na is an ideal of N.
         Now, if M is any subgroup of N, then M = \sum_{n=1}^{\infty} Na.
         Thus M becomes an ideal of N.
         Since N is regular, for every a \in N, there exists b \in N such that a = aba.
         Now a = aba = baa
                                                                 (cyclic commutativity)
                             = ba^2 \in Na^2
         So, N \subseteq Na^2
         Now Na \subseteq N \subset Na<sup>2</sup> \subseteq (Na)a \subseteq Na \subseteq N
         So, Na = Na^2 = N.
         Now we shall prove that Na^2 = aNa
         Let x \in Na^2.
         Then x = na^2
                 = naa
                                                                   (cyclic commutativity)
                  = aan
                                                                    (cyclic commutativity)
                   = ana
         So, x \in aNa
         That is, Na^2 \subseteq aNa.
         Let a \in aNa. Then y = ana for some n \in N
                                                                        (cylic commutativity)
                               = naa
                                  = na^2 \in Na^2
         That is, aNa \subseteq Na<sup>2</sup>
         Thus aNa = Na^2.
         Next, we claim that aN = aNa.
         Since Na is an ideal, for every a \in N, (Na)N \subseteq Na
         Also for every n \in N, an = (aba)n = a(ban) \in a(NaN) \subseteq aNa
         Thus aN ⊆ aNa
         Obeviousely aNa ⊆ aN
         Hence aN = aNa.
         Thus N = Na = Na^2 = aN = aNa for all a \in N.
2.10 Definition: A near – ring N is said to have property P_4, if ab \in I \implies ba \in I where I is any ideal of
2.11 Theorem: Let N be a regular cyclic commutative near – ring.
Then (i) every ideal of N is Completely semi prime
     (ii) N has property P<sub>4</sub>
Proof:
         (i) Let I be any ideal of N.
         Let a^2 \in I. Since N is regular, there exists b \in N such that a = aba.
         Now a = aba = baa
                                                                   (cyclic commutativity)
                   = ba^2 \in NI \subseteq I
         This implies a \in I
         So, every ideal of N is completely semi – prime.
         (ii) Let ab \in I
```

N.

Then $(ba)^2 = (ba)(ba) = b(ab)a \in NIN \subseteq N$ (by Result 1.4) Then by (i) ba \in I. Thus ab \in I \Longrightarrow ba \in I Thus N has property P_4 .

2.12 Theorem: Let N be a regular commutative near – ring. For every ideal I of N, (I: S) is an ideal of N, where S is any subset of N.

Proof: Let I be an ideal of N and S be any subset of N.

By Result 1.5 (ii), $(I:S) = \{n \in N/ns \subseteq I\}$ is a left ideal of N. Let $s \in S$ and $a \in (I:S)$, then as $\in I$. Since N has property P_4 , sa $\in I$.

Then for any $n \in N$, $(sa)n \in I$

That is, $s(an) \in I$

So, $(an)s \in I$

(Since N has property P_4)

That is, an \in (I: S) for any n \in N and have (I: S) is a right ideal. Consequently (I: S) is an ideal.

2.13 Theorem: Let N be a regular cyclic commutative near – ring. For any ideal I of I and $x_1, x_2, ..., x_n \in N$, if $x_1. x_2. x_3 x_n \in I$, then $< x_1 > < x_2 > < x_3 > ... < x_n > \subseteq I$.

Proof: Let $x_1. x_2. x_3....x_n ∈ I$ ⇒ $x_1 ∈ (I : x_2. x_3....x_n)$ ⇒ $< x_1 > ⊆ (I : x_2. x_3....x_n)$ ⇒ $< x_1 > x_2. x_3....x_n ⊆ I$ ⇒ $x_2 ∈ (I : x_3....x_n) < x_1 >$ ⇒ $< x_2 > ⊆ (I : x_3...x_4....x_n) < x_1 >$ ⇒ $< x_2 > x_3 x_4...x_n ⊆ I$.

Continuing like this we get $< x_1 > < x_2 > < x_3 > \dots < x_n > \subseteq I$.

- **2.14 Theorem:** Let N be a cyclic commutative ring. Then
- (i) N has strong IFP
- (ii) N is semi prime near ring

Proof:

(i) Let I be a ideal of N. Since N is zero symmetric, NI \subseteq I. By Theorem 2.9, aN = Na². Hence am = ma² for some n, m \in N.

Hence if $ab \in I$, then for every $n \in N$, $anb = ma^2b = ma(ab) \in NI \subseteq I$

That is, $ab \in I \Rightarrow anb \in I$ for all $n \in N$

This proves N has strong IFP.

(ii) Let M be a N subgroup of N. Then M is an ideal by Theorem 2.9. Let I be any ideal of N such that $I^2 \subseteq M$. Then by result 1.4, $NI \subseteq I$.

If $a \in I$, then a = aba for some $b \in N$ (Since N is regular)

This implies $a = aba \in I(NI) \subseteq I^2 \subseteq M$. So, any N - subgroup M of N is a semi – prime ideal. In particular $\{o\}$ is a semi – prime ideal and hence N is a semi – prime near – rinmg.

References:

- 1. Dheena. P, On strongly regular near rings, Journal of the Indian Math.Soc; 49(1985), 201 208.
- 2. Dheena .P, A note on a paper of Lee, Journal of Indian Math. Soc; 53(1988), 227 229.
- 3. Fain, Some Structure theorems for near rings, Doctoral dissertation, University of Oklanama, 1968.
- 4. Gopalakrishnamoorthy. G, Kamaraj .M and Geetha.S, On Quasi weak Commutative Near Rings, International Journal of Mathematics Research, Vol.5(5) (2013), 431 -440.
- 5. Gratzer.George, Universal Algebra, Van Nostrand, 1968.
- 6. Henry .E, Heartherly, Regular Near rings, Journal of Indian Maths.Soc, 38 (1974), No.(28), 67 88.
- 7. Pilz. Giinter, Near rings, North Holloand, Aneterdam, 1983.
- 8. Uma.S, Balakrishnan. R and Tamizh chelvam. T, Pseudo Commutative near rings, Scientia Magna, 6(2010) No.2, 75 85.