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PHARMACOPHORE, 3D-QSAR MODELING STUDIES OF HDAC2 LIGANDS
AND INSILICO SEARCH FOR NEW HITS
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Abstract: Pharmacophore and atom based 3D-QSAR studies were carried out on series of
compounds belonging to hydroxamic acid as Histone deacetylase 2 (HDAC2) inhibitors. Based on
the ligand based pharmacophore model, 5 point pharmacophore model AADHR - two H-bond
acceptors (A), one H-bond donors (D), one hydrophobic group (H) and ring (R) was developed and
the generated pharmacophore model was used to derive a predictive atom based 3D-QSAR model for
the studied data set of 34 compounds. The developed 3D QSAR model has significant correlation
coefficient value (R* = 0.967) along with high Fisher ration (F = 234.4), low SD value (SD = 0.095) and
0.602). 3D QSAR results
supported by favorable and unfavorable regions of hydrophobic, H bond donors and electron

the model validated by cross validated correlation coefficient (Q* =

withdrawing groups, these results can be useful for further design of new potent HDACz2 inhibitors.
Further pharmacophore model was utilized in virtual screening to identify potential (ZINC4089202,
ZINC4000330, ZINC2897245 and ZINC4043342) HDAC2 inhibitors

Keywords: Cancer, Hydroxamic acids, HDAC2, Molecular docking, Pharmacophore, QSAR, Virtual
screening.

Introduction: The chromatic structure of the
histone has two forms as acetylated and
deacetylated,

histone

the equilibrium regulated by
acetylases  (HATS)

deacetylases (HDACs) enzymes. Histone binds

and histone

to negatively charged DNA through positively
charged lysine residue N-terminal tails. Lysine
residue of the histone N-terminal tail can

perform acetylation and deacetylation by
histone acetylases and histone deacetylases
enzymes [1]-[2]. The equilibrium between HATSs
and HDAC s alter the activity of the residue and
affects

activities [3].

the chromatin structure and gene
Histone deacetylases (HDAC),
deacetylases the epsilon-N-acetyl lysine on
histone tails and restores the positive charge on
lysine residue [4]. HDAC family enzymes are
found in plants, fungi, animals, archaebacteria
HDAC family has been
based on the

homology and yeast proteins. Class I, II and IV

and eubacteria [5].

classified into four classes
operated by Zn dependent mechanism and Class
III operated by NAD mechanism. HDAC 1, 2, 3

and 8 belongs to class I and are homologous to

yeast enzyme rpd3 and are located in nucleus,
HDAC 4, 5, 6, 7, 9 and 10 belong to class II and
are homologous to yeast Hda1 and are located in
nucleus and cytoplasm, HDAC11 belongs to class
IV and Sirtuins (Sirt1-7) belong to class III and
are homologous to the yeast silencing protein
Sirz2 [6]-[7]. Histone deacetylases (HDACSs) are
consider as viable drug targets for multiple
therapeutic applications including various
cancers such as colon cancer, lung cancer,
cervical carcinoma, breast cancer, kidney/cervix
and diseases  like

cancer neurological

Alzheimer’s  disease, fungal, viral and
inflammatory diseases [8]-[10]. The hydroxamic
acids as HDACz inhibitors are widely reported
and first FDA approved hydroxamic acid drug is
SAHA (suberoylanilide hydroxamic acid or
vorinostat) for treating Cutaneous T-cell
Lymphoma [11]-[13]. QSAR studies of HDAC with
known inhibitors have been reported early for
optimization of HDAC inhibitors as anticancer
drugs [14]. Earlier literature on pharmacophore,
QSAR of HDAC2 with known benzamide
derivatives, imidazole

benzimidazole and
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lead
optimization and led compound discovery [15]-

derivatives provide information on
[16]. Quantitative structure-activity relationship
(QSAR) s

optimizing the compounds and widely used in

computational approach in
drug discovery to reduce the time and cost. The
Insilico study with pharmacophore modeling
and 3D QSAR were useful in predicting the
biological activity of lead compounds.

In the present study Insilico studies on
hydroxamic acids were carried out by using
pharmacophore modeling, atom based QSAR
approaches to design novel potent HDAC2
inhibitors. The best 3D QSAR model utilized for
3D database screening to identify new inhibitors

of HDAC=.

Materials and Methods:
Data set: Data sets of 34 hydroxamic acid
derivatives with inhibitory activity against

HDAC2 were used for this 3D-QSAR study [17]-
[21]. The inhibitory concentration (ICs,) of these
molecules against HDAC2 were converted into
corresponding pIC,, (-log(ICs,)) and were used
as dependent variables in 3D QSAR calculations
(Table 1). The dataset was divided into training
and test set. The training set was selected
randomly by considering the 80% of training set
and 20% of test set. The training set consisted of
28 compounds selected to validate the 3D-QSAR
model, other 6 compounds were used as test set.

Table 1: Structures and activity pICso of training
set and test set compounds 1-34

0 No
\N)‘\/\/\/\’( R

o)

Common pharmacophore hypothesis (CPH)
generation: Chemical structures of all reported
compounds were developed using ISIS draw
Ligprep module in Schrodinger and used in
ligand preparation to minimize the compound
using OPLS_2005 force filed to generate the 3D
and tatuomers  with

structure charge

neutralization [22]. This study was performed
the PHASE for 3D-QSAR
pharmacophore [23]. PHASE
utilizes fine-grained conformational sampling

using software

development

and scoring techniques to identify common
which
characteristics of 3D chemical structures that are

pharmacophore hypothesis, convey
reported to be critical for binding.

All ligands were imported into PHASE module
and conformation generation is an important
step in PHASE algorithm. Conformers were
generated using Configen model taking
distance-dependent dielectric solvent model.
Default parameters were used for generation of
About

generated per

conformers. 1000 conformers were

structure with 50 step
minimization. The minimized conformers were
filtered through a relative energy of 10 kcal/mol
and minimum atom deviation of 1.00 A° [24]-
[25]. 10 kcal/mol values set an energy threshold
relative to lower energy conformer, if
conformers having higher energy than threshold
value are discarded. Thus only lowest non-
redundant conformers of ligands were
incorporated in the process of pharmacophore
development.

The six built pharmacophore features, hydrogen
bond acceptor (A), hydrogen bond donor (D),
hydrophobic group (H), negatively charged
group (N), positively charged group (P) and an
aromatic ring (R) were defined by a set of
chemical structure patterns as SMART queries
and assigned one of three possible geometrics
that define the physical characteristics of the
site: (1) Point - Site is located on a single atom in
SMART query; (2) Vector - Site is located on a
single atom in the SMART query and assigned
directionality according to one or more vectors
originating from the atom; and (3) Group - Site
is located at the centre of a group of atoms in the
SMART query. For aromatic ring, the site is
assigned directionality, defined by a vector that
is normal to the plane of the ring. The activity

(pICs,) of molecules were divided into active (=
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Compound R pIC, || 17 (training) | 1-benzyl-4-(p-tolyl)-1H-

No 1,2,3-triazole 6.168

1 (training) (S)-2-amino-3-(1H- 18 (training) | (S)-N-benzyl-2-methyl-
indol-3-yl)-N-(4'- 3-phenylpropanamide 6.853
methyl-[1,1'-biphenyl]-2- 19 (training) | (S)-2-methyl-N-
yl)propanamide 6.777 phenethyl-3-

2 (training) 4'-methyl-[1,1'- phenylpropanamide 6.481
biphenyl]-2-amine 6.612 || 20 (training) | 1-(3-bromophenyl)-2-(4-

3 (training) 2-methyl-4-(3- (p-tolyl)-1H-1,2,3-
nitrophenyl)thiazole 6.946 triazol-1-yl)ethanol 6.844

4 (training) tert-butyl  (4'-methyl- 21 (test) 1-benzyl-5-(m-tolyl)-1H-
[1,1'-biphenyl]-2- 1,2,3-triazole 6.95
yl)carbamate 7.13 22 (training) | 1-(3-bromophenyl)-2-(5-

5 (training) 3-(2-methylthiazol-4- (p-tolyl)-1H-1,2,3-
yl)aniline 7.568 triazol-1-yl)ethanol 6.665

6 (test) 2-amino-N-(4'-methyl- 23 (training) | 1-benzyl-4-(m-tolyl)-1H-
[1,1'-biphenyl]-2- 1,2,3-triazole 7.366
yl)acetamide 6.438 | | 24 (training) | 1-phenyl-5-(p-tolyl)-1H-

7 (training) ethyl (3-(2- 1,2,3-triazole 6.835
methylthiazol-4- 25 (training) | 1-(3-bromophenyl)-2-(4-
yl)phenyl)carbamate 7.602 (m-tolyl)-1H-1,2,3-

8 (training) 2-methyl-4-(2- triazol-1-yl)ethanol 7.191
nitrophenyl)thiazole 6.536 || 26 (training) | 1-(3-bromophenyl)-2-(5-

9 (test) tert-butyl (2-(2- (m-tolyl)-1H-1,2,3-
methylthiazol-4- triazol-1-yl)ethanol 6.935
yl)phenyl)carbamate 7.677 || 27 (training) | 1-(4-fluorobenzyl)-5-(p-

10 (training) (S)-2-amino-3-(4- tolyl)-1H-1,2,3-triazole 7.241
hydroxyphenyl)-N-(4'- 28 (training) | 1-(4-fluorobenzyl)-4-(m-
methyl-[1,1'-biphenyl]-2- tolyl)-1H-1,2,3-triazole 7.111
yl)propanamide 6.688 | | 29 (training) | 1-phenyl-4-(p-tolyl)-1H-

11 (training) (S)-2-amino-N-(4'- 1,2,3-triazole 7.323
methyl-[1,1'-biphenyl]-2- 30 (training) | 1-(4-fluorobenzyl)-4-(p-
yl)-3- tolyl)-1H-1,2,3-triazole 6.531
phenylpropanamide 6.806 | | 31 (test) 1-(4-fluorobenzyl)-5-(m-

12 (test) 2-methyl-4- tolyl)-1H-1,2,3-triazole 6.906
phenylthiazole 7-455 || 32 (test) (S)-N-(4'-methyl-[1,1'-

13 (training) | 2-amino-N-(3-(2- biphenyl]-2-
methylthiazol-4- yl)pyrrolidine-2-
yl)phenyl)acetamide 7.721 carboxamide 6.714

14 (training) | N-(3-(2-methylthiazol- 33 (training) | 2-(2-methylthiazol-4-
4-yl)phenyl)acetamide | 8.214 yl)aniline 7.853

15 (training) | o-toluidine 6.995 | | 34 (training) | toluene 8

16 (training) | 1-phenyl-4-(m-tolyl)-1H-
1,2,3-triazole 7.193 7) and inactive (< 6) setting the maximum and
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minimum values in the activity threshold
window of PHASE. 15 actives compounds were
generated and used for pharmacophore
modeling and subsequent scoring.

Common  pharmacophore features  were
identifies from a set of variants - a set of feature
type that defines a possible pharmacophore
using tree based partition algorithm with
maximum tree depth of 3 and the size of
pharmacophore box was 1 A’ to optimize final
common pharmacophore hypotheses (CPHs).
The CPHs were examined using scoring function
to yield best alignment of the active ligands. The
quality of alignment measured by survival score
defined as

S = WiiteSsite + Whee Svec + WioiSvot + WeeiSset + Wen
where W and S are weight and score, S
represents alignment score, the RMSD in the site
point position; S,.. represents vector score, and
averages the cosine of the angles formed by
corresponding pairs of vector features in aligned
structures; S, represents volume score based on
overlap of van der Waals; models of non-
hydrogen atoms in each pair of structures; and
Scel Tepresents selectivity score, and accounts for
what fraction of molecules are likely to match
the hypothesis regardless of their activity toward
the receptor. Wy, Wi W, and W, have
default values of 1.0, where as W,,; has a default
value of 0.0 was used in hypothesis generation.
W™, represents reward weight defined by m”
where m is the number of actives which match
the hypothesis.

3D-QSAR model building: PHASE module
used in 3D QSAR model for a set of ligands that
are aligned to a selected hypothesis. The data set
was divided into training (80%) and test set
(20%) randomly. Selected hypothesis was used
to build the atom based 3D QSAR model. The 3D
QSAR model was generated using training set
consisting of 28 compounds using grid spacing
of 1 A. The PLS regression method was
performed using PHASE module with maximum

of N/4 PLS factors (N = number of training set

ligands). The generated QSAR model should
statistically significant, i.e., it should have good
regression value, low RMSE value and should
predict the activity of new molecules accurately
and identify the active hits from the database.
Therefore QSAR model was validated using test
set for prediction. The statistical parameters
such as R* (Correlation coefficient), Q* (Q* for
the predicted activity), Pearson-R (correlation
between the predicted and observed activity),
SD (Standard deviation), RMSE (Root mean
square error), P (Significance level of variance
ratio) and F-value were used for the selection of
the best QSAR model.

Database The validated

pharmacophore hypothesis was subjected to

Screening:

screen against natural database containing 53299
molecules. The main aim of this screening is to
find potential lead molecules with increased
inhibitory activity against HDAC2 inhibitors.
Database hits were ranked in order of their
fitness score, phase predicted activity, vector
alignment and volume terms. The fitness scoring
function is an equally weighted composite of
these three terms and ranges from o to 3, as
implemented in the default database screening
in PHASE. The ligands were selected based on
the best fitness score and other screening
options were kept default.

Molecular Docking: The 3D crystal structure of
HDAC2 (PDB id: 3MAX) was downloaded from
the PDB
(http://www.rcsb.org/pdb). The receptor protein

structural database site

is prepared in discovery studio by removing
water molecules and co-crystallized ligand and
further applying CHARMm force field to
macromolecule 3MAX. The receptor binding
sites were searched using flood filling algorithm.
The LibDock program implemented in discovery
studio was used to define protein site features
referred to polar and non polar features, with
sphere of 15 A° radius used as the binding area
[25]. The Conformations of ligands poses were
generated using FAST method and then placed
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into the binding area and all are minimized by
CHARMm force field. The generated ligands
were docked into the defined binding site on the
HDAC2 protein. Ligand binding in the receptor
cavity was evaluated by scoring function of
LibDock score and H-bond interaction.

Results and Discussion:

A pharmacophore modeling and 3D QSAR
studies were performed on hydroxamic acids to
know the effect of spatial arrangement of
structural features on HDAC2 inhibition. The
pharmacophore model validated against the
database to find novel HDAC2 inhibitors.

Table 2: Scores of different parameters of the
pharmacophore hypotheses using PHASE

ID Sur | Sit | Ve | Vol | Sele | Mat | Act

viva | e | cto | um | ctivi | che | ivit

1 r e ty ] y
AAD [331 |0. [0.9|04 |1444 |15 7.8
HR 9 92|19 |78 53
AAD |331 |0. |0.9| 0.4 |[1642 |15 7.8
DH 8 89 | 46 | 83 53
AAA |331 |0. |09 |05 [1.687 |15 7.5
DH |7 |79 |72 |55 68

=
o -1
‘ 8

Fig. 1 Generated pharmacophore model AADDH,
illustrates two H- bond acceptors (A3, A4; pink),
two H-bond donors (D6, D7; blue) and one
hydrophobic groups (Hio; green) features with
distance (A°) between different sites

Pharmacophore generation: In
pharmacophore model generation, compounds
having activity >7 consider as actives and < 6 as

inactive compounds. The active compounds

contain important structural features for
inhibition of HDAC2. 15 compounds represent
the active pharmaset were selected for common
pharmacophore generation. Tree based partition
algorithm requires all 15 compounds should
match, 5 featured pharmacophore hypothesis
generated from the list of variants. Based on the
scoring function three best pharmacophore
hypotheses, namely AADHR, AAADH and
AADDH, were selected for 3D QSAR model
building. The pharmacophore hypotheses
AADHR, AAADH and AADDH have survival
score of 3.319, 3.318 and 3.317 respectively. The
Pharmacophore hypothesis AADHR selected
based on the features contains two H-bond
acceptors (A), one H-bond donors (D), one
hydrophobic group (H) and ring (R) features,
the five site pharmacophore model AADHR with
inter site distance were shown in fig. 1 The score
of the hypotheses are given in Table 2QSAR
Studies: The three common pharmacophore
hypotheses were selected to build the atom
based 3D QSAR model. The data set of the
compounds was randomly divided into training
set (28 compounds) and test set (6 compounds).
The activity considered as dependent variables
and PHASE descriptors as independent variables
developing 3D QSAR model by PLS

regression value. The predictability of the

for

generated 3D QSAR was evaluated by test set
compounds. The statistical values R* SD, F and
P were used to evaluate training set and Q7
Pearson -P and RMSE for test set evolution. The
QSAR results of three pharmacophore models
were given in Table 3. The developed QSAR
models predicts high R* value above 0.9 and F
value 234.4, SD less than o.1 and P value of 6.61E-
18 with significant training set of compounds.
For selecting best QSAR model not only high R*
value but also predictive ability of the model is
considered. The model AADHR has predictive
ability Q* value of 0.6. The statistical values of
selected best QSAR model: R* = 0.967, F = 234.4
and lowest values for SD = 0.095, P = 6.61E-18 for
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training set compounds with highest value of Q*
= 0.602, Pearson - P = 0.846 and lowest value of
RMSE = 0.266 for test set. The correlation graph
between the activity and PHASE predicted
activity of training and test set compounds was
shown in fig. 2 with best fit. The PHASE
predicted and experimental activity of both
training and test compounds were given in Table

C-2 position of aromatic ring hypotheses
Table 4: Fitness and predictive activity of the
training set and test set compounds

4.
Table 3: Quantitative Structure Activity
Relationship (QSAR) results for the three
Common Pharmacophore Hypotheses

AADHR | AAADH | AADDH
SD 0.095 0.1566 0.1608
R? 0.967 0.9114 0.8824
F 234.4 823 60.1
p 6.61E-18 9.00E-13 2.65E-11
RMSE 0.2663 0.1999 0.3796
Q? 0.6029 0.7428 0.4686
Pearson-R | 0.8462 0.898 0.9407

The 3D QSAR model provides the key structural
features for ligand interaction with the HDAC2
receptor. The selected AADHR QSAR model is
visualized and analyzed with approved drug
SAHA bond
hydrophobic non-polar, negative and positive

using  hydrogen donors,
ionic, electron withdrawing features.

The results obtained from the 3D QSAR study
are useful to find important structural features
responsible for biological activity of the ligands.
In PHASE generated QSAR model the blue color
cubes indicates favorable regions, red color
cubes as unfavorable regions for inhibitory
activity. Fig. 3a illustrates the presence of blue
color cubes at A4 indicates positive potential of
H-bond donors and red color cubes at D6 shows
negative potential of H-bond donor groups at
this position. Fig. 3b demonstrates the presence
of blue color cubes at A4 and Hio indicates
hydrophobic groups are favorable at these
positions, red color group at D6 and Hio shows
unfavorable hydrophobic groups at this position
and the presence of greater blue color cubes at

Compoun | Activit | Predicte | Residu | Fitnes
d No. y d e ]

(pICs,) | Activity

(pICso)

1 6.777 6.81 -0.033 | 2.33
2 6.612 6.64 -0.028 | 2.51
3 6.946 | 7.02 -0.074 | 2.58
4 7.13 7.1 0.03 1.92
5 7.568 | 7.55 0.018 3
6 6.438 6.64 -0.202 | 2.25
7 7.602 7.49 0.112 2.5
8 6.536 6.73 -0.194 | 2.49
9 7.677 |73 0.377 | 2.66
10 6.688 6.76 -0.072 | 2.41
1 6.806 | 6.79 0.016 2.42
12 7.455 7.65 -0.195 | 2.15
13 7.721 7.79 -0.069 | 2.8
14 8.214 8.12 0.094 | 2.08
15 6.995 | 7.14 -0.145 | 2.56
16 7.193 7.17 0.023 2.54
17 6.168 6.04 0.128 1.01
18 6.853 6.82 0.033 1.01
19 6.481 6.46 0.021 1.96
20 6.844 | 6.87 -0.026 | 2.24
21 6.95 7.21 -0.26 2.02
22 6.665 | 6.51 0.155 2.27
23 7.366 7.45 -0.084 |1.97
24 6.835 6.8 0.035 2.01
25 7.191 7.26 -0.069 | 2.45
26 6.935 7 -0.005 | 2.19
27 7.241 7.24 0.001 2.19
28 7.111 7.15 -0.039 | 2.02
29 7.323 7.21 0.113 2.28
30 6.531 6.56 -0.029 | 2.45
31 6.906 | 7.2 -0.294 | 1.99
32 6.714 6.95 -0.236 | 1.9
33 7.853 7.65 0.203 2.8
34 8 8.06 -0.06 2.08

indicates favorable for hydrophobic to enhance
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the activity of the compounds. Fig. 3¢ & d
illustrates red color cubes at the C-4 position of
aromatic ring hypotheses shows unfavorable
positive ionic and negative ionic groups. Fig. 3e
illustrates the presence of blue color cubes at A4
and C-2 position of aromatic ring hypotheses
shows electron withdrawing groups enhances
the inhibitory activity and the red color cubes at
C-4 position of aromatic ring hypotheses shows
electron withdrawing groups decreases the
inhibitory activity. Fig. 3f shows combined
effects QSAR model. The QSAR model explains
the presence of H-bond donors, electron
withdrawing groups and hydrophobic groups
the inhibitory activity of the
compounds. Substitution of these groups at
specified positions enhances the activity of the
the H-bond donors at Ag,

hydrophobic groups at A4, Hio and C-2 position

enhances

compounds,

on aromatic ring and electron withdrawing (H -
bond acceptors) at C-2 position on aromatic ring
are favorable for substitution.

(a)

10 -
R?=0.967

©
]

Predctive activity

Exp. activity

(b)

R? = 0. 602
76 - L 4

7.4 -
7.2 ®» ¢

6.8 -
6.6 - *
6.4 -
6.2 -
6

6 6.26.46.66.8 7 7.27.47.67.8 8

Predctive activity

Exp. activity

Fig. 2 The scatter plot for the experimental and
predictive activity of the (a) training set and (b)
test set compounds

(a)

(d)

IMRF Journals

62



Engineering Sciences International Research Journal : Volume 3 Issue 1 (2015)

ISSN 2320-4338

Fig. 3 3D-QSAR visualization for compound 34,
(a) H-donor (b) hydrophobic (c) negative ionic
(d) positive ionic (e) electron withdrawing (f)
effect. (Blue
influence on activity and red cubes unfavourable

combined cubes favourable
influence on activity)

Database Screening: The validated AADHR
pharmacophore hypothesis was used to search a
3D database for the structures that matches the
Virtual

screening carried out on natural database to find

pharmacophoric features of model.

potential lead compounds for HDAC2 inhibition.
The lead compounds were selected based on
their fitness score and Lipinski's rule of five;
compounds have (i) molecular weight less than
500, (ii) less than 5 H-bond donors, (iii) less than
10 H-bond acceptors and (iv) an octanol/water
partition coefficient (LogP) value less than s.
The final selected lead compounds (571) were
subjected to molecular docking studies to find
potential lead compounds for HDAC2.

Molecular Docking: Molecular docking studies
were carried out on lead compounds from
natural database screening and optimized
compounds from QSAR studies. The HDAC2
protein has 3 chains, chain A is selected for
docking studies [27]. The docking score and
hydrogen bond interactions were consider for
the best of the docked
SAHA is chosen as reference
compound for comparing the dock score of

selecting pose

compounds.

compounds. The results of docking score and H-
bonds are listed in Table 5 and all compounds
were ranked by LibDock score. SAHA has 126.37
dock score and 4 hydrogen bond interactions
with ARG39 (2), HIS183, GLY305, GLY154 amino
acids. The docking pose of top four natural

compounds  (ZINC4089202,  ZINC4000330,
ZINC2897245 and ZINC4043342) displayed in
fig. 4 ZINC4089202 (N-(2-hydroxy-2-

phenylethyl)-2-(4,8,8-trimethyl-2-0x0-2,6,7,8-
tetrahydropyrano(3,2-g]chromen-3-
yl)acetamide) has the LibDock score of 160.93,
five hydrogen bonds with HISi45, GLN265 (2),
TYR308, HIS146, GLY154 and also forms pi-pi
bonds with LEU144, PHE155 and pi-sigma bonds
with ARG39. The docking pose of ZINC4000330
(4,8-dimethyl-2-0x0-3-(3-0x0-3-((pyridin-3-
ylmethyl)amino)propyl)-2H-chromen-7-olate)
revealed four H bonds with ARG3g9, CYSi56,
HIS183, GLY154 and LibDock score of 140.29 and
pi-pi bond with ARG39 and pi-sigma with
LEU144. ZINC2897245 (methyl 5-(4-
benzamido-3-hydroxytetrahydrothiophen-2-

For

yl)pentanoate) the LibDock score is 138.93, the
docked ligand formed four hydrogen bonds with
ARG39, HIS145, TYR308 (3), GLY154 and pi-pi
bond with PHE155. ZINC4043342 (N-benzyl-6,7-
dimethoxy-1-methyl-3,4-dihydroisoquinoline-
2(1H)-carboxamide) has LibDock score of 123.98,
three H bonds with ARG39, TYR308, GLY154 and
pi-pi bonds with PHE155 and ARG39.

The combination of pharmacophore and 3D
QSAR identified
structural features to optimize hydroxamic acids

study  successfully key
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and the database search provides potent natural
compounds to inhibit HDAC2.

(b)

(d)

Fig. 4 Docking pose of SAHA and lead
compounds (a) SAHA (b) ZINC4089202 (c)
ZINC4000330 (d) ZINC2897245 (e) ZINC4043342

Table 5: Docking scores of identified lead
compounds and H-bond interactions

Compound LibDoc | H-bonds

k Score
SAHA 126.37 | ARG39 (2),
HISi183, GLY3o0s5,
GLY154
ZINC408920 |160.935 | HIS1i45, GLN265
2 (2), TYR308,
HIS146, GLY154
ZINC4089775 | 160.181 | GLN265 (2),

TYR308, HIS146

ZINC408950 |151.481 | GLN265, TYR308
7

ZINC408946 | 150.77 GLN265 (2),
8 GLY306
ZINC8791404 | 148.209 | GLN265 (2),

TYR308, HIS146

ZINC4000330 | 140.294 | ARG39, CYS156,
HIS183, GLY154

ZINC2897245 | 138.937 | ARG39,  HISi4s,
TYR308 (3),
GLY154

ZINC3897389 | 135.987 | ARG39,  HISi45,
HIS183, GLY154

ZINC4043342 | 123.983 | ARG39, TYR308,
GLY154
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ZINC1286436 |121.889 | ARG39, CYS156
9
Conclusion: The present work provides

pharmacophore modeling and 3D QSAR studies
of some potent hydroxamic acid compounds.
Pharmacophore hypothesis of HDAC2 inhibitors
were developed using PHASE, these hypotheses
were used to build atom based 3D QSAR model.
A five point hypothesis AADHR (two H-bond
acceptors (A), one H-bond donors (D), one
hydrophobic group (H) and ring (R)) provides
good 3D QSAR statistical significance and
The activity
relationship of molecules visualized by 3D QSAR

predictive  ability. structure
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