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Abstract: Given a graph G, a new graph can be constructed by using Neighbourhood sets of G. This new 
graph is called the Neighbourhood graph of   the given graph G. This paper makes a study of 
Neighbourhood graph of  cartesian product of some graphs. 
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Introduction: Graphs discussed in this paper are simple, undirected and finite. For  v Î  V (G), the 
neighbourhood N(v) of v is the set of all vertices adjacent to v in G. N[v] = N(v) È {v} is called closed 
neighbour of v. A vertex v Î  V (G) is called support if it is adjacent to a pendant vertex (that is a vertex 
of degree one). Any undefined  terms in this paper may be found in Harary [2]. 
The concept of neighbourhood number of a graph has been studied by Prof. E. Sampath kumar and Prof. 

P. S. Neeralagi [7]. A set S of points in a graph G is a neighbourhood set if G = ][vNsvÎU , where 

][vN   is the subgraph of G induced by v and all points adjacent to v. The neighbourhood number 
0n

(G) of G is the minimum cardinality of a neighourhood set. The concept of g  - graph of a graph denoted 

by g .(G) was introduced by Dr. N. Sridharan[8]. A subset D of V(G) is said to be a dominating set of G, 

if every vertex in V – D is adjacent to some vertex in D. The domination numbet g (G) is  the minimum 

cardinality of a dominating set. This parameter has been investigated by many authors including Berge, 
cockayne, Hedeteniemi and Walikar et al. The vertex set V( g .(G)) is the set of all g -sets G and for two 

sets,Si, SjÎ  V(g .(G)),  Si, Sj are adjacent in g .(G) if and only if Sj = (Si – {U}) U {v}, where u ÎSi, v Ï Si,  

 i ≠ j. In [8], Dr. N. Sridharan developed a lot of interesting results by making use of this new graph. The 
maximum cardinality of a maximum independent set is called the independence number of G and is 

denoted by 
0b (G). In [6] Dr. V. Swaminathan, A. P. Pushpalatha et al introduced the concept of 

0b .(G) 

(namely 
0b  - graph of a graph). The vertex set V(

0b .(G)) is the set of all 
0b - sets of G and for two sets 

Si, SjÎ  V(
0b .(G)), Si, Sj are adjacent in 

0b .(G) if and only if  Sj = (Si – {u}) U {v}, where u ÎSi,  

v Ï Si,  i ≠ j. 
 
 
Neighbourhood Graph of a Graph: 

Definition 1.1: A set S of points in a graph G is a neighbourhood set if        G = ][vN
SvÎ

U , where 

][vN   is the subgraph of G induced by v and all points adjacent to v. The neighbourhood number 
0n

(G) of G is the minimum cardinality of a neigbourhood set and the set is denoted by 
0n - set of G. The 

set of all 
0n - sets of G is the vertex set of 

0n .(G) and two 
0n -sets  D1 and D2  are adjacent in 

0n .(G) if 

and only if |D1 ∩ D2| = | D1| - 1 = | D2| - 1.  
 



Mathematical Sciences International Research Journal Volume 7 Spl Issue 2                  ISSN 2278-8697 

 

 
Journal Published by IMRF Journals | Jan 2018 Edition                                                          |    162 

Definition 1.2:   Let G be a graph. Let H be a graph whose vertex set is the set of all neighbourhood sets 

of G and two vertices u, vÎ H representing neighbourhood sets Si, Sj respectively are adjacent if and only 

if Sj = (Si – {u}) U {v}, where u ÎSi, v Ï Si,  i ≠ j.  H is called the neighbourhood graph of a graph G and is 

denoted by 
0n .(G). 

 
Example 1.3: 

 
The 

0n -sets of G are {2, 4}, {3, 5}. The
0n -graph of G is as follows:    

          (ie) 
0n .(G) =  2K1 or 

2K .  

Observation 1.4:  |V[
0n .(G)]| =  The number of distinct 

0n -  sets of G. 

 
Neighbourhood Graph of Some Standard Graphs: 

1. 
0n .(Kn) = K1, " n. 

2. 
0n .(K1,n) = K1 

3. 
0n .(Km,n) = 
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í
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mnifK
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7. 
0n .(Fn) = K1 

8. 
0n .(Dr,s) = K1 

9. 
0n .(Fm,n) = K1 

 
Neighbourhood Graph of Cartesian Product of Some Graphs: 
Definition 3.1: Let G1 = (V1,E1) and  
G2 = (V2,E2) be any two graphs. Then their Cartesian product G1¨ G2 is defined to be the graph whose 
vertex set is V1 ¨V2 and the edge set is {((u1,v1),(u2,v2)) either u1 = u2 and v1v2ÎE2 or v1 = v2 and u1u2ÎE1}. 
 
Theorem 3.2 If G =Kn ¨Pm,  then 
 n0.(Kn¨Pm) = nK1, where m is odd and m ≥ 3, n ≥ 3. 
Proof: Let G = Kn¨Pm. Let V(Kn) = {u1,u2,…,un} and V(Pm) = {v1,v2,…,vm). 
Then V(G) = {(u1,v1),…,(un,v1),(un,v2) (un,v2),…,( u1,vm),…,( un,vm)}. Then the possible n0 – sets of G are: 
S1 =A1È B1, where  
A1 ={(ui,vj) / i = 2,3,4,…,n and i ¹ 1, j is even, 1 ≤ j ≤ m} 
B1 = {(un – i, vj)/ i = n – 1, j is odd, 1 ≤ j ≤ m} 
S2 =A2È B2, where  
A2 ={(ui,vj) / i = 1,3,4,…,n and i ¹ 2, j is even, 1 ≤ j ≤ m} 
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B2 = {(un – i, vj)/ i = n – 2, j is odd, 1 ≤ j ≤ m} 
S3 =A3È B3, where  
A3 ={(ui,vj) / i = 1,2,4,…,n and i ¹ 3, j is even, 1 ≤ j ≤ m} 
B3 = {(un – i, vj)/ i = n – 3, j is odd, 1 ≤ j ≤ m} 
. 
. 
. 
Sn-1= An-1 È Bn-1, where  
An-1 ={(ui,vj) / i = 1,2,3,…,n-2 and i ¹ n-1, j is even, 1 ≤ j ≤ m} 
Bn-1 = {(un – i, vj)/ i = 1, j is odd, 1 ≤ j ≤ m} 
Sn= An È Bn, where  
An ={(ui,vj) / i = 2,3,4,…,n-1 and i ¹ n, j is even, 1 ≤ j ≤ m} 
Bn = {(un – i, vj)/ i = 0, j is odd, 1 ≤ j ≤ m} 
There are n – number of distinct n0-sets of G. Hence these n0-sets can be considered as the vertex set of 
n0-graph of G. Using these points, we get n0.(Kn ¨Pm) = nK1. 
 
Example 3.3 

 
The n0-sets of K4¨P3 are {5,6,7,4,12},  {5,6,8,3,11},{5,7,8,2,10},{6,7,8,1,9} namely S1 , S2, S3, S4 respectively. 
The n0- graph of K4¨P3 is as follows: 

 
 
Theorem 3.4: IfG = Cn ¨P2, then   n0.(Cn ¨P2) = C2n, where n is odd. 
Proof: Let G = Cn ¨P2. Let V(Cn) = {u1,u2,…,un} and V(P2) = {v1,v2}. Then 
V(G)={(u1,v1),(u2,v1),..,(un,v1),(u1,v2),         (u2,v2),…,( un,v2)}. Then the possible n0-sets of G are, 
S1 = {A1È B1

È C1}, where 

A1 = {(ui,vi)/ i = 1},B1 = {(U
1

2

1,
-

=

n

j

j vu )/ j is even}, C1 = {(U
n

r

r vu
1

2,
=

)/ r is odd}. 

S1 = {A1È B1
È C1}, where 

A1 = {(ui,vi)/ i = 1},B1 = {(U
1

2

1,
-

=

n

j

j vu )/ j is even}, C1 = {(U
n

r

r vu
1

2,
=

)/ r is odd}. 

S2 = {A2È B2
È C2

È D2}, where 

A2 = {(ui,v1)/ i = 1},B2 = {(U
1

2

1,
-

=

n

j

j vu )/ j is even}, C1 = {(U
n

r

r vu
3

2,
=

)/ r is odd}, 

D2 = {(us,v2)/s=2}. 
S3 = {A3È B3

È C3
È D3}, where 

A3 = {(ui,v1)/ i = 1,3},B3= {(U
1

4

1,
-

=

n

j

j vu )/ j is even}, C3 = {(U
n

r

r vu
3

2,
=

)/ r is odd}, 

D3 = {(us,v2)/s=2}. 
S4 = {A4È B4

È C4
È D4}, where 



Mathematical Sciences International Research Journal Volume 7 Spl Issue 2                  ISSN 2278-8697 

 

 
Journal Published by IMRF Journals | Jan 2018 Edition                                                          |    164 

A4 = {(ui,v1)/ i = 1,3},B4 = {(U
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M  
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is odd}. 
Then clearly we get 2n number of distinct n0-sets namely S1,S2,…,S2n. 

To construct n0.(Cn ¨P2), these 2n n0-sets are considered as the vertices of n0(G). Then any pair of 

different n0-sets say Si,Sj, 1 ≤ i,j ≤ 2n, i≠j are differe exactly in one place, hence these n0-sets are obviously 
adjacent in n0.(G). Then the set S1,S2,…,S2n form a cycle with the order 2n. Hence n0.(Cn ¨P2) = C2n. 

 
Example 3.5: 

 
 
The n0-sets of C3¨P2 are S1={1,2,4,6}, 
S2 = {1,2,4,5}, S3 = {1,3,5,4}, S4 = {1,3,5,6}, S5 = {2,3,4,5}, S6 = {2,3,4,6}. 
Then the n0 – graph of Cn ¨P2 is as follows: 
 

 
 
Theorem 3.6: If G = Cn ¨P2, then       n0.(Cn ¨P2) = 2K1, where n is even. 
Proof: Assume that G = Cn ¨P2. Let V(Cn) = {u1,u2,…,un} and V(P2) = {v1,v2}. So 
V(G)={(u1,v1),(u2,v1),..,(un,v1),(u1,v2),         (u2,v2),…,( un,v2)}.  
Then G has exactly two disjoint n0-sets of cardinality ‘ n’  namely, 
S1 = {(ui,v1)È (uj,v2) / i is odd, 1 ≤ n, j is even,  1 ≤ j ≤ n} 
S2 = {(uj,v1)È (ui,v2) / i is odd, 1 ≤ n, j is even,  1 ≤ j ≤ n}. 

Hence n0.(Cn ¨P2) = 2K1. 

 
Example 3.7: 
 

 
 
The n0-sets of C4¨P2 are S1 = {1,3,6,8}, S2 = {2,4,5,7}. Then the n0-graph of C4¨P2 is as follows: 

 
Theorem 3.8: If Tn is a tree with maximum number of independent vertices and Pm is a path, where m ≥ 
3, then  

n0.(Tn¨ Pm) = 
î
í
ì

oddismifK

evenismifK

,

,2

1

1
 

Proof:  Let Tn a tree with maximum number of independent vertices and Pm be  a path. 
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Case:1 m is even. 
If m is even, then Tn¨ Pm has exactly two disjoint n0-sets. (i.e) S1 = AÈ B and S2 = CÈ D, where  
A = {(u1,vi)/ 1 ≤ i ≤ m, i is odd} 
B={(ui,vj) /i = 2,3,…,n, 1 ≤ j≤ m, j is even} 
C = {(u1,vi)/ 1 ≤ i ≤ m, i is even}, 
D = {(ui,vj) /i = 2,3,…,n, 1 ≤ j≤ m, j is odd}. Hence n0.(Tn¨ Pm) = 2K1. 
Case:2 m is odd. 
If m is odd, then Tn¨ Pm has a unique set. (i.e) S= AÈ B, where  
A = {(u1,vi)/ i = 1,2,…m, i is odd} 
B = {(ui,vj) /i = 2,3,…,n, 1 ≤ j≤ m, j is even}. Hence  n0.(Tn¨ Pm) = K1. 
 
Example 3.9: 
 

 
 
The n0-sets of T3¨ P3 is {1,5,6,7}. Hence  n0.(T3¨ P3) = K1. 
 
Example 3.10: 
 

 
 
The n0-sets of  T3¨ P4 are {1,5,6,7,11,12} and {4,10,8,9,2,3}. n0.(T3¨ P4) = 2K1. 
 
Result 3.11:  If Tn+1 = K1,n,then n0.(Tn+1¨ P2) is (n – 1) – regular graph with the order 2n.  
 
Example 3.12: 
  

 
 
The n0- sets of  T4¨ P2 are namely {1,5,2,3,4},{1,5,2,3,8},{1,5,2,4,7},{1,5,3,4,6},{1,5,3,6,8},{1,5,4,6,7} namely S1, 
S2,…,S8 respectively. The n0-graph of T4¨ P2 is as follows: 



Mathematical Sciences International Research Journal Volume 7 Spl Issue 2                  ISSN 2278-8697 

 

 
IMRF Biannual Peer Reviewed (Referred) International Journal | SE Impact Factor 2.73             |    167  

 
 
Theorem 3.13  If If mnº0(mod 2), then n0.(Pm¨ Pn) = 2K1. Otherwise n0.(Pm¨ Pn) = K1. 

Proof: If mnº0(mod 2), then Pm¨ Pn has exactly two disjoint minimum no-sets of cardinality
2

mn
. 

Hence n0.(Pm¨ Pn) = 2K1. 

If mnº 1(mod 2), then has Pm¨ Pn a unique no-setsof cardinality úû

ú
êë

ê
2

mn
.Hence n0.(Pm¨ Pn) = K1. 

Example 3.14 :   
Case: 1  mnº0(mod 2). 
 

 
 
The n0-sets of P4¨P5 are {2,4,6,8,10,12,14,16,18,20},  (1,3,5,7,9,11,13,15,17,19}.              Therefore n0.(P4¨ P5) = 
2K1. 
Case:2 mnº 1(mod 2). 
 

 
 
The n0-sets of P5¨P5 is {2,4,6,8,10,12,14,16,18,20,22,24}. Hence n0.(P5¨ P5) = K1. 
 
Conclusion: In this paper, we have made a  study of new concept called neighbourhood graph of a 
graph. It is further continued in our subsequent investigations in this direction. 
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