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1. Introduction: Generalized closed sets in a topological space is introduced by Levine[3] in 1970.  In 
1963 Levine [2] introduced semi-open sets in topological spaces. After Levine's work, many 
mathematicians turned their attention to generalizing various concepts in topology by considering 
semi-open sets instead of open sets. Dunham [1] introduced the concept of generalized closure using 
Levine's generalized closed sets and defined a new topology τ* and studied some of their properties. The 
notions of compactness and connectedness are useful and fundamental notions of not only general 
topology but also of other advanced branches of mathematics. Many researchers have investigated the 
basic properties of compactness and connectedness. The productivity and fruitfulness of these notions 
of compactness and connectedness motivated mathematicians to generalize these notions. In the course 
of these attempts many stronger and weaker forms of compactness and connectedness have been 
introduced and investigated. 
 
In this paper, we introduce the concepts of -connected spaces and -compact spaces and define -
separated sets using -closure operator. We investigate some of their basic properties. We also discuss 
their relationship with already existing concepts. 
 
2. Preliminaries: Throughout this paper  represents a topological space on which no separation 
axiom is assumed unless otherwise mentioned.  will be replaced by  if there is no changes of 
confusion. For a subset  of a topological space ,  and  denote the closure of  and the 
interior of  respectively. We recall the following definitions and results. 
 
Definition 2.1: A subset  of a topological space  is called generalized closed [3] (briefly g-closed) 
if  whenever  and  is open . A subset  of a topological space  is called 
generalized open (briefly g-open) if  is g-closed. 
 
Definition 2.2: A subset  of a topological space . The generalized closure of [1] is defined as the 
intersection of all g-closed sets containing  and is denoted by * . The generalized interior of  is 
defined as the union all g-open sets contained in  and it is denoted by * . 
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Definition 2.3: A subset  of a topological space  is said to be a -open set[5] if *
* . The collection of all -open sets in is denoted by . A subset  of a 

topological space  is called a -closed set if  is -open. The collection of all -closed sets in 
is denoted by . 

 
Theorem 2.4 [5]: Every open set is -open. 
 
Definition 2.5: Let  be a subset of a topological space . Then the union of all v-open sets 
contained in  is called the -interior of [6] and it is denoted by . That is, :

. 
 

Definition 2.6: Let A be a subset of a topological space . Then the intersection of all -closed sets 
in  containing  is called the -closure of [6] and it is denoted by . That is, 

 

Definition 2.7: A function  is called a -continuous[7] if the inverse image of each open set in 
 is -open in . 

 
Definition 2.8: A function  is called  -irresolute[7] if the inverse image of every -open set in 

 is -open in . 
 
Definition 2.9: A function  is said to be -closed[7] if image of each closed set in  is -closed 
in . 
 
Definition 2.10: A function  is said to be -open[7] if image of each open set in  is -open in 

. 
 
3. -Connected Spaces: In this section we introduce -connected spaces. We give characterizations for 

-connected spaces and also investigate their basic properties. 
 
Definition 3.1: A topological space  is said to be -connected if  cannot be expressed as the union 
of two disjoint non-empty -open sets. 
 
Definition 3.2: A subset  of a topological space  is said to be a -connected set in  if  cannot be 
expressed as the union of two disjoint non-empty -open sets in . 
 
Theorem 3.3:  If a space  is -connected then it is connected. 
Proof: Let  be -connected. Suppose  is not connected. Then there exist disjoint non-empty open sets 

 and  such that .  By Theorem 2.2,  and  are -open sets. This is a contradiction to  is -
connected.  
However, the reverse implications of Theorem 3.3 is not true as shown by the following example. 
 
Example 3.4: Let  with the topology . Here 

. Clearly  is connected. But not -connected, since  is the union of two disjoint 
non-empty -open sets  and . 
 
Theorem 3.5: For a topological space  the following are equivalent. 
(i)  is -connected. 
(ii) The only subsets of  which are both -open and -closed are the empty set and . 
(iii)  Each -continuous of  into a discrete space  with at least two points is a constant map. 
Proof: (i)  (ii): Let  be a -connected space. Suppose  is a subset of  which is both -open and -
closed. Then  and  are disjoint -open sets and . Since  is -connected, either 

 or . That is either  or .     
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(ii)  (i): Suppose  is not -connected. Then there are disjoint non-empty proper -open sets  and  
such that . Since  and  is -closed, by our assumption  or  which is a 
contradiction to  is a non-empty proper -open set. Therefore  is -connected. 
(ii)  (iii): Let  be a -continuous function, where  is a discrete space with at least two points. 
Then         is both -open and -closed for each . By (ii),  or X. If 

  for all , then  f  will not be a function. Also there cannot be exist more than one  such that 
. Hence there exist only one  such that  and hence . This 

shows that  is a constant map. 
(iii)  (ii): Let  be both a -open and a -closed set in . Suppose . Let  be a discrete space with 
at least two points. Fix  and  in  and . Define  by  for  and  for 

. Let  be an open set in . If  contains  alone, then . If  contains  alone, then 
. If  contains both  and , then . Otherwise . In all the cases 

 is -open in . Therefore   is -continuous function. By (iii)  is constant. Therefore  

or  for all  in . If  for all  in , then . If  for all  in , then . 
These complete the theorem. 
 
Definition 3.6: Two non-empty subsets  and  of a space  are called -separated if 

. 
 
Theorem 3.7: Any two disjoint non-empty sets are -closed sets if and only if they are -separated. 
Proof: Suppose  and  are disjoint non-empty -closed sets. Then 

. This shows that  and  are -separated.  
 
Theorem 3.8: (i) If  and  are -separated and , , then  and  are also -separated.   
(ii)If  and  are both -open and if  and , then  and  are -separated.  
Proof: (i) Let  and  be -separated. Then . Since  and , then 

 and . This implies that,   and hence 
. Similarly  and hence . Therefore  and  

are -separated. 
(ii) Let  and  both -open subsets in . Then  and  are -closed. Since , then 

 and so . Since , then . 
Thus, . Similarly, . Hence  and  are -separated. 
 
Theorem 3.9: The sets  and  of a space  are -separated if and only if there exist  and  in 

 such that ,  and  and . 
Proof: Necessity: Let  and  be -separated. Then . Take  
and . Then  and  are -open sets such that ,  and  and 

. 
Sufficiency: Let  and  be -open sets such that ,  and , . Then 

 and  and  and  are -closed. This implies,  and 
. That is,  and . Therefore 

 and hence  and  are -separated. 
 
Remark 3.10:  Each two -separated sets are always disjoint. 
Proof: Let  and  be -separated.  Then . Now, 

. Therefore  and hence  and  are disjoint. 
 
Theorem 3.11:  A topological space  is -connected if and only if  is not the union of any two -
separated sets. 
Proof: Necessary:   is a -connected space.Let Suppose , where  and  are -separated sets. 
By Definition 3.6, . Since , we have . 
Therefore  and . Hence  and . Therefore  and 

 are -closed sets and hence  and  are disjoint -open sets. That is  is not -
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connected, which is a contradiction to  is a -connected space. Hence  is not the union of any two -
separated sets. 
Sufficiency: Assume that  is not the union of any two -separated sets. Suppose  is not -connected. 
Then , where  and  are non-empty disjoint -open sets in . Since  and , 

 and . That is A and B are v-separated sets. This 
is a contradiction to (ii). Therefore  is -connected. 
 
Theorem 3.12:  If , where  is a -connected set and ,  are -separated sets, then either 

 or .  
Proof: Suppose  and . Let  and . Then  and  are non-empty sets 
and , because . Since ,  and , 

 are -separated sets,  and . Therefore 
,  are -separated sets such that . Hence by Theorem 3.13,  is not -connected. This is a 

contradiction to  is -connected. So we get either or . 
 
Theorem 3.13: If  is -connected set, then  is also a -connected set. 
Proof: Let  be a -connected set. Suppose  is not -connected. Then by Theorem 3.11, there exist 

-separated sets  and  such that . Since  is a -connected set and 
, by Theorem 3.12, either  or . If , then . Since  and  are -

separated sets we have , , and  and hence . Also 
. Therefore , which is a contradiction to . 

Similarly if , we get a contradiction to . Therefore  is a -connected set. 
 
Theorem 3.14: If  and  are -connected subspace of a space  such that , then  is a -
connected subspace of . 
Proof:  Suppose that  is not -connected. Then there exist two -separated sets ,  such that 

, by Theorem 3.11. Since  and  are -separated,  and  are non-empty sets and 
.  Since ,  and ,  are -connected, by Theorem 

3.12,  or  and  or . 
         (1) If  and , then  and so . Since  and  are disjoint, we have 

, which is a contradiction to . Similarly, if  and , we get a contradiction.      
         (2) If  and , then . Therefore , which is a contradiction to 

. By the same way we can get a contradiction if  and .  
Therefore  is -connected subspace of a space . 
 

Theorem 3.15: (i) Let ®  be -continuous surjection and  be -connected.  Then  is connected. 
(ii) Let ®  be -irresolute surjection and  be -connected.  Then  is -connected. 
Proof: (i) Suppose  is not connected. Then , where  and  are disjoint non-empty open sets 
in . Since  is -continuous surjection,  where  and  are disjoint 
non-empty -open sets in . This is a contradiction to  is -connected. Hence  is connected.  
(ii) Suppose  is not -connected. Then , where  and  are disjoint non-empty -open sets in 

. Since  is -irresolute surjection, , where  and  are disjoint non-
empty -open sets in . This is a contradiction to  is -connected. Hence  is -connected. 
 

Theorem 3.16:  Let ®  be -open, -closed and injection and  be -connected.  Then  is 
connected. 
Proof: Let  be a clopen subset of . Since  is -open and -closed,  is both -open and -closed. 
Since  is -connected by Theorem 3.6(ii),  or . Hence  or , since  is 
injection. By Theorem 3.5,  is connected. 
 
4. -Compact Spaces: In this section we introduce the concept v-compact spaces using -open sets and 
study some of their basic properties. 
Definition 4.1: A collection  of -open sets in  is called a -open cover of a subset  of  if 

. 
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Definition 4.2: A topological space  is said to be -compact if every -open cover of  has a finite 
subcover. 
 
Definition 4.3:  A subset  of a topological space  is said to be -compact relative to  if every -open 
cover of  has a finite subcover. 
 
Theorem 4.4: Every -compact space is compact. 
Proof: Let  be -compact. Suppose  is not compact. Then there exists a open cover  of  has no 
finite subcover. Since every open set is -open, then we have -open cover  of , which has no finite 
subcover. This is a contradiction to  is -compact. Hence  is compact. 
 
Theorem 4.5: A -closed subset of a -compact space  is -compact relative to . 
Proof: Let  be a -closed subset of a -compact space . Then  is -open. Let  be a -open cover 
of . Then  is a -open cover of . Since  is -compact, it has a finite subcover say 

. Then  is a finite -open cover. Thus  is -compact relative to . 
 

Theorem 4.6:  Let ®   be -continuous surjection and  be -compact.  Then  is compact. 
Proof:  Let ®  be a -continuous surjection and  be -compact. Let  be an open cover for . 
Since  is -continuous,  is a -open cover of . Since  is -compact,  contains a 
finite subcover, namely . Then is a finite subcover for , 

since  is surjection. Thus  is compact. 
 
Theorem 4.7:  Let ®  be a -open function and  be -compact. Then  is compact. 

Proof: Let ®  be a -open function and  be -compact. Let {Vα} be an open cover for X. Since f 
is v- open, {f(Vα)} is a v-open cover of Y. Since Y is v-compact, {f(Vα)} contains a finite subv-cover, 
namely {f(Vα1), f(Vα2),…,f(Vαn)}. Then {Vα1, Vα2 , . . .,Vαn} is a finite subcover for X. Thus X is compact. 
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