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Abstract: Stabilization of inertial neural networks with time-delay based on impulsive control is 
investigated in this paper. Sufficient delay-dependent stabilization results are obtained in terms of linear 
matrix inequalities via Lyapunov stability theory which involves the construction of Lyapunov-
Krasovskii functional. Information of time-delay is taken into account to obtain these results. Here time-
delay is considered to be time-varying and the activation function is assumed to be sector bounded. 
Derived conditions can be validated via MATLAB. Finally, an example is provided to support the derived 
results. 
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1. Introduction: Past decades witnessed the dynamical analysis of various types of neural networks 
(NNs) namely Hopfield NNs, bidirectional associative memory (BAM) NNs, cellular NNs, Cohen-
Grossberg NNs and so on. In the year 1981, Babcock and Westervelt published an article on the dynamics 
of simple electronic NNs which initiated the research on inertial NNs (INNs). In their research work, 
they mentioned that inertial characteristics added to resistance and capacitance couplings can cause 
spontaneous oscillation, chaotic response and so on. Dynamics of INNs received much attention among 
researchers because of its both physical and biological significance, for details one can see [1]-[3], [8], [9] 
and therein. 
 
Meanwhile, time-delays which occur in the process of information storage and transmission in NNs can 
cause instability, oscillation in the dynamics of NNs. Hence, there is an increasing interest to investigate 
the dynamics of NNs with the inclusion of time-delays, for details see [4]-[7]. On the other hand, states 
of NNs are often subject to abrupt change at certain moments of time due to the switching 
phenomenon, frequency change called impulse effects. Impulsive NNs belong to the special category 
which is the combination of continuous-time and discrete-time systems. Hence it is necessary to include 
the effects of impulses in the dynamics of NNs, see [10]-[12]. Sometimes impulsive effects can destabilize 
stable systems which are considered as the destructive one but on the other hand they can also be used 
to stabilize the de-stable systems. In this work, impulses are used to stabilize the de-stable systems. 
 
In [10], authors established distributed delay-dependent stability criteria for impulsive INNs in which 
they considered both discrete and distributed time-delays. Robust stability conditions for inertial BAM 
NNs with time-delays and uncertainties via impulsive effect are considered in [11]. Stability analysis of 
Markovian jump stochastic BAM NNs with impulse control and mixed time-delays is considered in [12]. 
Hence in the existing literature, it can be seen that stability analysis of INNs with impulsive effects is 
taken in to account whereas the problem of stabilization of INNs via impulsive control has not gained 
attention from the researchers. This motivates us to consider the problem of stabilization of time-delay 
INNs via impulsive control. 
 
Inspired by the above observations, stabilization problem of INNs based on impulsive controls is 
considered in this work. Here the activation function of the neural network is assumed to be sector-
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bounded and the time-delay is taken to be time-varying. Delay-dependent stabilization results are 
derived for the considered problem based on the construction of Lyapunov-Krasovskii functional (LKF) 
involving some quadratic and integral terms. Schur complement lemma is used in the derivation process 
to convert some nonlinear matrix inequalities into linear matrix inequalities (LMIs). Obtained results 
can be easily solved through MATLAB software. Derived theoretical results are validated through an 
example. 
 
Rest of this paper is structured as follows. In Section 2, the problem description and preliminaries are 
given. In Section 3, sufficient delay-dependent stabilization conditions pertaining to impulsive control 
are presented. In Section 4, numerical example is given to illustrate the proposed results and Section 5 
concludes the paper. 
 
Notations: Throughout this paper,  and  denote, respectively, the n-dimensional Euclidean 
space and the set of all  real matrices. For symmetric matrices  and , the notation  
means that  is positive-semidefinite (positive-definite);  denotes the transpose of the matrix  
;  is the identity matrix with appropriate dimension;  is the Euclidean norm in .  
is the piece-wise continuous function;  and  denote the right-hand and left-hand limits of 
the function  respectively; ,  denote respectively the maximum 
and minimum eigenvalues of the matrix A and matrices, and matrices, if not explicitly stated, are 
assumed to have compatible dimensions. 
 
2. Problem Description and Preliminaries: Consider the following second order system of differential 
equation model of INNs 

                      (1) 

for , where  denotes the inertial term of the  neuron at time ,  is the state of 
the  neuron at time .  denotes the neuron activation function of  neuron at time  and 

,  is the time-varying delay,  represents the external input on the  neuron at 
time .  and  are positive constants,  and  are the connection weights related to the neurons 

without delays and with delays respectively. Initial condition of (1) is given by  and 
, for  where  and  are bounded and continuous. 

 
Now transform the second order differential equation model into a system of first order differential 
equations using the transformation  and the resulting system is given 
as 

        (2) 

with the initial conditions given by  and ,  for . Next, we 
shift the equillibrium of system (2) to the origin by using the transformation  and 

, where  , . Here 
 is the equillibrium point of (2). Therefore, the transformed system in matrix form can be written 

as 

                                                          (3) 

Initial conditions  and , where 
,  are state vectors of (3), 

 with ,  

,  ,  ,   

and . 
System (3) with continuous and impulsive control becomes 

          (4) 
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where  are continuous control inputs and are impulse control inputs. 
 and  are known constant matrices.  and 

.  and  denote the impulse at the moment . Here the discrete time sequence  
satisfies  and . Both  and  are assumed to be 
right continuous, i.e.,  and . Initial conditions   
are piece-wise continuous functions at finite number of points. 
Next design the controllers  and  as follows 

                             (5) 
where  and  are control gain matrices to be designed. Also use the fact that 

 and  then system (4) becomes 

          (6) 

The following assumptions, definition and lemma are required to prove the main results. 
 
Assumption 2.1: The neuron activation function  in (6) is globally Lipschitz in ,  and 
satisfies the following condition 

 

where  and  are known real constant matrices of appropriate dimensions. 
 
Assumption 2.2: Time-varying delay  satisfies 

 
where  and  are constants. 
 
Definition 2.3: The equilibrium point of INNs with impulses and time-delay (6) is said to be 
exponentially stable under impulsive control with convergence rate  if there exists  such that 

 

 
Definition 2.4: The function  belong to class  if 
1. the function  is continuous on each of the sets  and , 
2.  is locally Lipschitzian, 
3. for each , there exist finite limits  and  

     with . 

 
3. Stabilization Results for Impulsive INNs: In this section, we derive the stabilization conditions for 
the time-delay INNs based on impulsive control. Here, control gain matrices introduced in (5) is taken 
as 

                             (7) 
where  and  are unknown matrices to be determined. 
 
Theorem: System (6) is exponentially stable under the Assumptions 2.1 and 2.2 if there exist scalars 

, symmetric positive-definite matrices  and , matrices  and  such that the following 
symmetric LMIs hold 

                                                                                              (8) 

where  

with the stabilizing gains given by (7). Here  with  

   , 

  ,    ,  
 and remaining entries of symmetric block are zero. 
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Proof: Stabilization results for system (6) can be obtained from the construction of LKF as follows 

 

                                       (9) 

where  and  are unknown symmetric positive definite matrices of appropriate dimensions. 
From Definition 2.4, one can see that (9) is locally Lipschitz for each  and . 

Moreover, all the conditions of Definition 2.4 hold and hence  for each . 

Dini's upper right hand derivative of (9) along trajectory of (6) can be determined as follows: 

 

                                       

                                                   

                                                                                                                                                             (10)  
According to Assumption 2.1, we have

                                             .                  (11) 

Combining inequalities (10) and (11), we get 

                                                           (12) 

which implies that 
                                                                                                                                                 (13) 

 where  and  

with  
 
 

  
From (9), at , we have 

  
                                                                              
                                                                    
                                                                               
which implies that  
                                                                                           (14) 
                                                                                          (15) 
One can notice that inequalities (13)-(15) are not LMIs and hence cannot be solved directly by using LMI 
solvers. So apply Schur complement lemma to inequalities (14) and (15) gives 

                                                          (16) 

 
Now pre- and post-multiply inequalities (16) by  on both sides and using the relation , 
we get  and . Inorder to get , pre- and post-multiply both sides of (13) by , where 

 and also use the relation . After some algebraic 
manipulations, one can get . 
 From inequality (12), we can obtain   

 for each  and 

.  
 From LKF, we get  

    and , where 

 and hence     

                                       . Hence 

by definition of exponential stability, system (6) is exponentially stable with stabilizing gains (7). This 
completes the proof of the theorem. 
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Remark: This research work investigates the stabilization analysis of INNs with time-delays under the 
influence of impulsive controls. Here information of both time-varying delay and its derivative is 
considered. Even though the stabilization problem of INNs with both discrete and distributed delay 
under impulsive control is investigated in [10], information on the bound of discrete delay is not 
considered in [10]. This work is focused to derive stabilization results of INNs which include the 
information on time-delay and its derivative. 
 
4. Numerical Examples: In this section, a numerical example is presented to demonstrate the validity 
of the derived results. 
Example: Consider system (6) with the following parameters 

, 

  
For the above parameters, delay-dependent stabilization condition obtained in Theorem 3.1 is solved 
through MATLAB LMI solvers which show that the considered system (6) is exponentially stabilizable. 
Feasible matrices are given below  

Stabilizing gains are given by 

 

 Hence we get 
 

which shows that system (6) is exponentially stabilizable. 
 
5. Conclusion: In this work, stabilizability problem of INNs with time-delay under impulsive control is 
investigated. Both time-varying and constant type of time-delay is taken into account and the 
corresponding results are presented. LKF involving exponential terms are utilized in the process of 
obtaining stabilization results. Those conditions are checked using MATLAB through LMI solvers. The 
problem considered in this work can be extended with the incorporation of multiple time-delays in the 
place of single delay and also with parameter uncertainties. 
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