PROTEIN SIMILARITY / DISSIMILARITY STUDY USING MOMENT VECTOR BY NON-HOMOLOGOUS METHOD

D. Vijayalakshmi

Assistant Professor, Department of Mathematics Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram, Tamilnadu

S. Hemalatha

M. Phil Scholar, Department of Mathematics Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya,Kanchipuram, Tamilnadu

Abstract: Similarity / Dissimilarity of protein is measured using moment vector. The moment vector is constructed in a novel way by using physic-chemical properties of amino acids. Moment vector upto four dimensions are constructed. Euclidean distance between the moment vectors of each pair of protein measures the similarity between proteins.

Keywords: Protein Sequence, Sequence Similarity, Moment Vector.

1. Introduction: Development of sequencing techniques have increased the number of biological sequences in the data bases. Extracting the potential information from these sequences proves to be a challenging task. Extracting the information is essential as they determine the barer for the physicology and anatomy study of organisms. This study can be done by homologous method and non-homologous method.

Some non-homologous method Yao [1] studied the protein sequence based on pka value of COOH and NH3+ of 20 amino acids graphically. Xiao and Wu[2] represented protein in a 2-D graph based on physicochemical properties Liao et al [3] calculated the similarity or dissimilarity using distance formula and also represented protein sequence in a 2-D graph. Randic [4] represented protein in 2-D graph using the physicochemical property to study the similarity. Feng & Zhang [5] represented protein as Z_pcurve using hydrophobicity of amino acids. Bai and Wang [6] studied protein by 2-D graph using nucleotide triplet codons. Based on 3 physicochemical properties Abo el Maaty et al [7] represented protein in a 3-D graphical method. Yao [8] developed a graphical method to study about protein based on the Pk_a values of COOH and NH_3^+ of a amino acids. Also Xiao and Wu [9] studied protein in 2 dimensional graph using the physicochemical properties. In [10], Liao et al measures the similarity and dissimilarities between proteins using distance formula and also developed a new 2-D graphical representation. In this paper we present a novel moment vector using the primary structure of protein sequence. The moment vector of 4 dimension is obtained for each protein similarity/dissimilarity between protein sequences are measured using Euclidean distance between these moment vector of proteins.

2. Moment Vector: The primary structure of protein – the amino acid sequence plays a vital role in this part. Pl_a and Kh values of the amino acids are considered as x and y co-ordinates of the amino acids. Then the moment vector of 1 – dimension is calculated using the formula.

 $X = \frac{\sum (xi - yi)^{1}}{n^{1}}$ where n is the number of amino acids in the sequence.

The moment vector (X, Y) of 2-dimension is calculated using the formula

$$M_2 = (X, Y), X = \frac{\sum (xi - yi)^1}{n^1}, Y = \frac{\sum (xi - yi)^2}{n^2}$$

The moment vector (X,Y,Z) of 3-dimension is calculated using the formula

$$M_{3}=(X,Y,Z) \qquad X = \underbrace{\sum(xi-yi)^{1}}_{n^{1}}, \quad Y = \underbrace{\sum(xi-yi)^{2}}_{n^{2}}, \quad Z = \underbrace{\sum(xi-yi)^{3}}_{n^{3}}$$

$$M_{4}=(X,Y,Z,S) \qquad X = \underbrace{\sum(xi-yi)^{1}}_{n^{1}}, \quad Y = \underbrace{\sum(xi-yi)^{2}}_{n^{2}}, \quad Z = \underbrace{\sum(xi-yi)^{3}}_{n^{3}}, \quad S = \underbrace{\sum(xi-yi)^{4}}_{n^{4}}$$

$$The Field All Properties of the latter of the properties of the latter of$$

The Euclidean distance between moment vectors of each pair of proteins are calculated. This Euclidean distance measures the similarity between protein.

Data Used:

Protein ID	Protein Structure	Protein Description
4fc1		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
3ue7		TTCCPSIVARSNXNACRLPGTPEALCATYTGCIIIPGATCPGDYAN
3nir		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
2eyb		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
2eyc		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
2eyd		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
ıyv8		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
ıyva		TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
1CXI'		TTCCPSIVARSNFNVCRLPGTSEAICATYTGCIIIPGATCPGDYAN
ıcnr	200	TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN

Moment Vector:

	Protein-1 (4FC1)	Protein-2 (3UE7)	Euclidean distance	
One dimension	X= 5.510652	X=5.524783	0.014130435	
Two dimension	X= 5.510652	X=5.524783	0.02216.4611	
1 wo difficusion	Y=0.872683696	Y=0.855607372	0.022164611	
	X= 5.510652	X=5.524783	0.024536339	
Three dimension	Y=0.872683696	Y=0.855607372		
	Z=0.170296821	Z=0.159772471		
	X= 5.510652	X=5.524783	0.024968447	
Four dimension	Y=0.872683696	Y=0.855607372		
rour difficusion	Z=0.170296821	Z=0.159772471		
	S=0.039524883	Z=0.034899799		

	Protein-1 (4FC1)	Protein-3 (3NIR)	Euclidean distance	
One dimension	X= 5.510652	X= 5.510652	0	
Two dimension	X= 5.510652	X= 5.510652		
1 wo difficusion	Y=0.872683696	Y=0.872683696	0	
	X= 5.510652	X= 5.510652		
Three dimension	Y=0.872683696	Y=0.872683696	0	
	Z=0.170296821	Z=0.170296821		
	X= 5.510652	X= 5.510652		
Four dimension	Y=0.872683696	Y=0.872683696	0	
rour unitension	Z=0.170296821	Z=0.170296821		
	S=0.039524883	S=0.039524883		

	Protein-2 (3UE7)	Protein-3 (3NIR)	Euclidean Distance	
One dimension	X=5.524783	X= 5.510652	0.014130435	
Two dimension	X=5.524783	X= 5.510652	0.02216.4611	
1 wo difficusion	Y=0.855607372	Y=0.872683696	0.022164611	
	X=5.524783	X= 5.510652	0.024536339	
Three dimension	Y=0.855607372	Y=0.872683696		
	Z=0.159772471	Z=0.170296821		
	X=5.524783	X= 5.510652		
Four dimension	Y=0.855607372	Y=0.872683696	0.024968447	
	Z=0.159772471	Z=0.170296821		
	Z=0.034899799	S=0.039524883		

Result:

Table 1: Result using M1

	rable 1: Result using wil									
	PRO 2	PRO 3	PRO 4	PRO 5	PRO 6	PRO 7	PRO 8	PRO 9	PRO 10	
PRO 1	0.01413 0435	0	0	0	0	0	0	0.04521 7391	0	
PRO		0.01413	0.01413	0.01413	0.01413	0.01413	0.01413	0.05934	0.01413	
2		0435	0435	0435	0435	0435	0435	7826	0435	
PRO 3			0	0	0	0	0	0.04521 7391	0	
PRO 4				0	0	0	0	0.04521 7391	0	
PRO 5					0	0	0	0.04521 7391	0	
PRO 6						0	0	0.04521 7391	0	
PRO 7							0	0.04521 7391	0	
PRO 8								0.04521 7391	0	
PRO									0.04521	
9									7391	

Table 2: Result using M2

	PRO 2	PRO 3	PRO 4	PRO 5	PRO 6	PRO 7	PRO 8	PRO 9	PRO 10
PRO 1	0.02213 4611	0	0	0	0	0	0	0.0464 9459	О
PRO		0.022134	0.022134	0.022134	0.022134	0.022134	0.022134	0.0596	0.022134
2		611	611	611	611	611	611	7638	611
PRO							•	0.0464	0
3			0	0	0	0	0	9459	0
PRO				0		0	0	0.0464	0
4				0	О	0	О	9459	О
PRO						0	0	0.0464	0
5					0	0	O	9459	О
PRO						0	0	0.0464	0
6						0	O	9459	0
PRO							0	0.0464	0
7							0	9459	О
PRO								0.0464	0
8								9459	U
PRO		·	·		·				0.04649
9									459

Table 3: Result using M₃

	PRO 2	PRO 3	PRO 4	PRO 5	PRO 6	PRO 7	PRO 8	PRO 9	PRO 10
PRO 1	0.0245 36339	0	0	0	0	0	0	0.04655 3565	0
PRO		0.02453	0.02453	0.02453	0.02453	0.02453	0.02453	0.06023	0.02453
2		6339	6339	6339	6339	6339	6339	4645	6339
PRO 3			0	0	0	0	0	0.04655 3565	О
PRO 4				0	0	0	0	0.04655 3565	О
PRO 5					0	0	0	0.04655 3565	О
PRO 6						0	0	0.04655 3565	0
PRO 7							0	0.04655 3565	0
PRO 8								0.04655 3565	0
PRO									0.04655
9									3565

Table 4: Result using M4

	PRO 2	PRO 3	PRO 4	PRO 5	PRO 6	PRO 7	PRO 8	PRO 9	PRO 10
PRO 1	0.0249 68447	0	0	0	0	0	0	0.04655 6042	0
PRO 2		0.0249 68447	0.0249 68447	0.0249 68447	0.0249 68447	0.0249 68447	0.0249 68447	0.06037 7089	0.0249 68447
PRO 3			0	0	0	0	0	0.04655 6042	О
PRO 4				0	0	0	0	0.04655 6042	О
PRO 5					0	0	0	0.04655 6042	О
PRO 6						0	0	0.04655 6042	О
PRO 7							0	0.04655 6042	О
PRO 8								0.04655 6042	О
PRO 9									0.04655 6042

Conclusion: The similarity / dissimilarity of protein is studied using non-homologous moment vector. This is a novel method of constructing moment vector using physicochemical properties of amino acids. This method yields a result close to the results obtained by Blast sequence site. This also shows that as the dimensions of moment vector increase the accuracy of result obtained also increase.

References:

Yao YH, Dai Q, Li C, He PA Nan XY, Zhang YZ. Analysis of similarity / Dissimilarity of protein sequences. Proteins 2008;73:864-871.

- 2. Wu ZC, Xiao X, Chou KC. 2D-MH. A web server for generating graphic representation of protein sequence based on the physicochemical properties of their constituent amino acids. J.Theor, Biol.2010 267:29-34
- 3. Liao B, Liao B Y, sum XM, Zeng QG. A novel method for similarity analysis and protein subcellular localization prediction. Bioinformatics 2010; 20: 2678 2683.
- 4. Randic M. 2D graphical representation of protein based on physicochemical properties of amino acids, chemical Physics Letter 2007; 444 176 180
- 5. Z.P.Feng and C.T. Zhang, "A graphic representation of protein sequence and predicting the subcellulae locations of prokaryotic proteins. "International journal of Biochemistry and cell biology, Vol 34, No 3. pp. 298 207, 2002
- 6. F. Bai and T. Wang "A 2-D graphical representation of protein sequence based on nucleotide triplet codons". Chemical Physics letters . vol 413 no: 4-6. pp 458-462, 2005
- 7. M.I. Abo el Maaty M.M.Abo Elkhier and M.A.Abd Elwahaab, "3D graphical representation of protein sequences and their statistical characterization". Physical A: Statistical Mechanics and its applications vol. 389 no 21 PP 4668 4676 2010.
- 8. Yao YH, Dai Q, Lic, He PA, Nan XY, Zhang YZ. Analysis of similarity / dissimilarity of protein sequences. Proteins 2008; 73: 864 871.
- 9. WuZC, Xiao X, Chou KC, 2D MH; A Web server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids. J. Theor boil 2010; 267: 29 34.
- 10. Liao B, Liao BY, Sun XM, Zeng QG. A novel method for similarity analysis and protein subcellular localization prediction. Bioinformatics 2010. 26: 2678 2683.
