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Abstract: Bloom interconnection networks and covering sets are very important in computer 
architecture and communication techniques. In this paper, we solve the vertex cover problem for bloom 
interconnection networks. We also develop a linear time algorithm to find the exact solution of the 
vertex cover problem in bloom networks. Further we study the properties of bloom graphs and obtain its 
edge covering number.  
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Introduction: combinatorial problems have become more important recently in the study of coverage, 
connectivity and fault tolerance in communication networks. Interconnection networks can be 
represented as an undirected graph, where a processor is represented as a vertex and a communication 
link between processors as an edge between corresponding vertices. The minimum vertex cover problem 
in interconnection network consists of finding the minimum number of processors which covers all the 
communication links. 
 

The concept of vertex cover problem is motivated by the design of secure protocols for communication in 
interconnection networks. The vertex covering number of a graph is applied to measure the safety of a 
network. For instance, in a computer network, some servers play an essential role than others. Finding 
minimum vertex cover sets for that network whose vertices are the routing servers gives the optimal 
solution for designing the network defense strategy.   
 
The minimum vertex cover problem (MVCP) is a classical optimization problem in computer science and 
is NP-Complete. Many of the problems like determining the number and location of radar installations, 
branch banks, shopping centers and waste disposal facilities can be formulated as the vertex cover 
problem. Covering sets have always been an attractive area of research due to its applicability in real 
world life, especially for service and emergency facilities [7]. The covering problem is also an area of 
strong concern in the design of both parallel structures and parallel algorithms. The minimum vertex 
covering sets for any structural model of parallel computation is both useful for the construction of 
efficient algorithms for that structure.   
 
Most of the methods employed to solve MVCP are approximation algorithms or heuristics [3, 4, 5, 6, 8]. 
In contrast there has been surprisingly little work on covering problems in interconnection networks. 
We first define several terms related to graphs. Let  be an simple graph with vertex set  and 
edge set . A graph  is connected if every pair of vertices  in  is joined by a path, otherwise,  
is disconnected. We use the term graphs and networks interchangeably. The connectivity  of a graph  
is the minimum number of vertices whose removal results in a disconnected or trivial graph. This is also 
called vertex-connectivity. A subset  of  is called an independent set of  if no two vertices of are 
adjacent in . A clique of is a subset of  such that the subgraph of  induced by  is complete. An 
edge  of  is called a cut-edge or a bridge if removal of  disconnects the graph . In other words, is a 
bridge if and only if  is not contained in any cycle of . If a graph  does not contain any bridges then G 
is called a bridgeless graph. A graph  is bipartite if and only if it does not contain any odd cycles. A 
connected graph is called Eulerian if and only if there are no odd vertices in G. A cycle passing through 
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all the vertices of a graph is called a Hamiltonian cycle. A graph containing a Hamiltonian cycle is called 
a Hamiltonian graph. 
  
Bloom Graphs: Bloom interconnection networks are represented as undirected graphs whose vertices 

represent processors and edges represent inter processor communication links. 

 

Bloom graphs, as mathematical structures, are interesting in and of themselves as they are both planar 
and regular which make them particularly attractive as potential structures for massively parallel 
computers. Motivated by the grid, cylinder and torus networks, Antony Xavier et al. in 2014, introduced 
the definition of bloom graph [1]. The bloom graphs are useful graph networks which can also be studied 
by specialists in dynamical systems and probability. They are very reliable networks as their vertex 
connectivity equals the degree of regularity. 
 
The Bloom Graph denoted by , where  is defined as follows: the vertex set is 

two distinct vertices and being adjacent if and 
only if (i) and  defines the vertical edges. (ii)  and  
defines the horizontal edges in top most row. (iii)  and  defines 
the horizontal edges in lower most row. (iv) and  defines the slant edges 
[1]. For example, the grid view of bloom graphs  and  are shown in fig. 1(a) and 1(b) respectively 
and the flower view of bloom graph  and  is shown in               fig. 2(a) and 2(b) respectively. 

 

 
Figure 1(a). Grid view of   

 

 
Figure 1(b). Grid view of   

 
Antony Xavier et al. identified new topological representation for bloom graphs as grid view (fig.1(b)),  
and blooming flower view (fig.2(b)) and showed that these representations are isomorphic. Our 
algorithm of finding the minimum vertex cover set for bloom graphs works on the flower-like structure. 
To explain the flower structure of bloom networks, we consider  an example. From fig.2(b), the inner 
most cycle which is at the center of  colored in green is a cycle of length 6 denoted by . We call all 
those cliques of length 3 on top of  colored pink, as petals. These petals together with the center  is 
called a floret (pink and green colored edges and the vertices on them) and is denoted by  (see fig. 2(c)). 
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We denote by , the vertices in level , where .We explain the construction of the bloom 
graph using the flower view as follows. 
 
Construction of  :  

1. Input . 
2. Draw floret .(fig. 3(a)) 
3. ;  
4. while do 
5. Connect each  vertices on the petals by an edge such that it forms a cycle    around the floret . 
6. Subdivide each of the edges in level  and call the new vertices and edges thus found by subdivision 
as  level vertices and  level edges. 
7.  
8. end while 
9. stop. 
 

 
Figure 2(a). Flower view of  

 
 

 
Figure 2(b). Flower view of  
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Figure 2(c).  A Floret  

 
Minimum Vertex Cover: The minimum vertex cover consists in determining the minimum cardinality 

of a subset S of vertices such that all the edges are covered by those vertices in the set S.  The number of 

elements in the smallest vertex cover set is called the covering number of G, denoted by β(G).We call 

this set as a β - set. For the graph in fig.3, β – set is given by S={ 2,5,8,11 }. 

 

 
Figure 3. A graph with  

 
We now give a linear time algorithm for finding the minimum vertex cover set of bloom graph. We 

denote by , the vertices in level , where . Let  denote  number of alternate vertices 

in the level    . 
Algorithm MVC- .To find a minimum vertex cover set of a bloom graph. 
Input : A bloom graph   where ,  
Output : A MVC set  of . 
Initialization ; i = 1 
If  is even then 
while do 

 
 

end while 
end if 
If  is odd then 
while do 

 
 
 

end while 
endif 
stop 
The proof of correctness of the algorithm is given by the following theorem. 
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Theorem 1:  

If  is a Bloom graph then,                       

Proof: Let  be the bloom graph  and let  be a minimum vertex covering set of .  
Case (i) : If  is odd. To cover vertices and edges on floret  we choose  vertices on . That is,  
number of vertices are required to cover all the edges of . Since all  edges are already covered by  
vertices, we then choose all  number of  vertices which covers all  and  edges. Proceeding in this 

way, up to  times, we can have all edges except the level  edges are covered. Now, to cover  

edges, we require  vertices.  So clearly the set S will contain the vertices on levels  and 

 number of  vertices. Adding all the vertices in S, we get the covering number as . 

Case (ii) : If  is even. To cover vertices and edges on floret  we choose  vertices on  That is, 
number of  vertices, is required to cover all the edges of . Since all  edges are already covered by 
 vertices, we then choose all  number of  vertices which covers all  and  edges. Proceeding in this 

way, up to  times, we can have all edges of the graph covered. Thus the set  will contain the 

vertices on levels . Adding all the vertices in , we get the covering number as  

Suppose if  is not minimum. Then there exists a covering set  which is minimum. If this is the case, 
then leaving out a single vertex in any level    from the set  will leave the edges uncovered and so  will 
not be a covering set. Therefore,  has to be the MVC set. 
 
The vertices in a set can be used for various purposes, since every communication link will be under 
the coverage of one or more nodes. Router locations and backbone construction in wireless networks are 
designed based on the minimum vertex cover sets which can enhance the routing procedure.  
 
Theorem 2:Bloom graphs are bridgeless. 
Proof: Let  be a bloom graph.  By the construction of these graphs we observe that, for all  and , all 
edges in  lie on cycles. Hence we conclude that bloom graphs are bridgeless. 
 
Theorem 3: Bloom graphs are Eulerian. 
Proof: Let  be a bloom graph.  These are4-regular graphs and hence there are no odd degree vertices in 

. Therefore  is Eulerian. 
 
Theorem 4:Bloom graphs are non-bipartite. 
Proof: Let  be a bloom graph .  From the flower view of , we see that all bloom graphs contains 
cycles  which are odd cycles and hence non-bipartite. 
Theorem 5: [1]Bloom graphs are Hamiltonian. 
 

Invertible Graphs: In the design of network security, the primary focus is on defending the routes 

(edges) of the network by placing the minimum number of defenders in the network. However, in 

several practical applications, apart from defending the network, one has to consider the problem of 

replacing a defender by another when there is any defect in the network. To address this problem we 

studied the concept of invertible graphs. Invertible graphs are a subclass of bipartite graphs. Even 

though these are quite a small group of graphs they find wide applications where the independence and 

covering numbers play an important role, since these graphs are special in the sense that an 

independent set is also a covering set. Example of an invertible graph is shown in fig.4. 
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Figure 4. An invertible graph 

 
Theorem 6:Every bloom graph is not invertible. 
Proof: Every bloom graph contains at least n number of 3-cycles in it. Since odd cycles are not invertible, 

 are not invertible graphs. A problem that might seem closely related to vertex cover is the edge cover 
problem. We also obtain the minimum edge covering number of the bloom interconnection networks. 
 
Minimum Edge Cover And Perfect Matching: A set of edges of G is called an edge cover if that set 

covers all the vertices in G. The cardinality of the minimum edge cover set is called the edge covering 

number denoted by  β ^' (G). Finding the minimum edge cover is called the edge covering problem. 

 
Edge covers can be applied in network analysis. Another area where the edge covering number plays a 
role is the traffic phasing problem. Vertex cover and edge cover are closely related to perfect matching. 
Thereby, we were fascinated to find the kind of graphs for which, the edge covering and vertex covering 
numbers are equal.  
 
A perfect matching  in  is a maximum number of non-adjacent edges with the property that every 
vertex is incident with an edge of the matching.  is always a minimum edge cover. For the graph in 
fig.5, the minimum edge cover set is given by . 
 

 
Figure 5. A graph with  

 
Proposition 7:  If  is a Bloom graph with even number of vertices then  contains a perfect 
matching. 
Proposition 8:  If  is a Bloom graph with even number of vertices then  contains a near perfect 
matching. 

Theorem 9: Let  be a bloom graph. Then,  

Proof: Let  be a bloom graph.   Case (i) : If either  or  is even. Then  is even. Since G contains 
even number of vertices, we conclude by proposition 7 that G has a perfect matching. This perfect 

matching is a minimum edge cover for G. Hence . Case (ii): If both  and  are odd. Then 
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 is odd. Since contains odd number of vertices, we conclude by proposition 8 that  has a near 

perfect matching. Therefore,  

 

 
Figure 6. A perfect matching of  

 

Conclusion: Construction and analysis of covering sets and invertible graphs helps us in the security of 
the networks as these sets are useful in monitoring the edges of a network.We have identified an 
algorithm which solves the vertex cover problem for bloom interconnection networks. Further, we have 
presented some of the properties of bloom graphs. It is interesting to observe that how our study for the 
vertex cover problem sets the stage for a much tighter analysis and we believe that this should be the 
general approach used when designing exact algorithms for NP- hard problems. Our methodology is 
useful to solve the covering problem for parallel architectures like pancake and shuffle exchange 
networks. 
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