DYNAMIC OF GENERALIZED N - TOPOLOGY

M.Lellis Thivagar

Professor and Chairperson, School of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India mlthivagar@yahoo.co.in

D.Evangeline Christina Lily

Assistant Professor, Department of Mathematics, Lady Doak College, Madurai-625002, Tamilnadu, India chrisad262@gmail.com

Abstract: In this paper, we introduce the structure of generalized N-topological spaces. The notions of $N\mu$ -open sets, $N\mu$ -closed sets, $N\mu$ -interior, $N\mu$ -closure and N^*g -continuous are also introduced and several characterizations of them are obtained.

Keywords: Generalized *N*-Topology, $N\mu$ -Closed Sets, $N\mu$ -Closure, $N\mu$ -Interior, $N\mu$ -Open Sets, N^*g -Continuous.

2010 Subject Classification: 54A05, 54C10.

1. Introduction: In 1963, Levine[4] introduced semi-open sets and semi continuity in topological spaces. After him, many researchers introduced similar weaker forms of open sets such as α -open sets, feebly open sets, pre-open sets and β -open sets. It was Csaszar[1], who observed the common features in all these open sets and brought all these open sets under one umbrella by defining *γ*-open sets.

Let X be a non-empty set. Let $\Gamma(X)$ be the collection of all mappings $\gamma: P(X) \to P(X)$ possessing the property of monotonicity. A subset A of X is said to be γ -open if $A \subseteq \gamma(A)$. The collection μ of all γ -open sets contains \emptyset and is closed under arbitrary union. But it need not contain X and need not be closed under finite intersection. Such a collection is given the nomenclature, generalized topology.

In 2016, Thivagar et al.[2] introduced the structure of *N*-topology which is a non-empty set equipped with *N*-arbitrary topologies. In this paper, we have introduced generalized *N*-topological spaces.

2. Preliminaries: In this section, we discuss some basic definitions which will be useful for this paper. **Definition 2.1** [5]: A non-empty family μ of subsets of a non-empty set X is called a generalized topology, if $\emptyset \in \mu$ and arbitrary union of members of μ is again in μ . The pair (X,μ) is called a generalized topological space or GTS.

Definition 2.2 [2]: A quasi-pseudo metric on a non-empty set X is a function $d_1: X \times X \to \mathbb{R}^+ \cup \{o\}$ such that (i) $d_1(x,x) = o$ for all $x \in X$.

(ii) $d_1(x,z) \le d_1(x,y) + d_1(y,z)$ for all $x,y,z \in X$, where R⁺ is the set of all positive real numbers.

Definition 2.3 [2]: Let d_1 be a quasi-pseudo-metric on X, and let a function $d_2: X \times X \to \mathbb{R}^+ \cup \{o\}$ be defined by $d_2(x,y) = d_1(x,y)$ for all $x,y \in X$. Trivially d_2 is a quasi-pseudo-metric defined on X and we say that d_1 and d_2 are conjugate one another.

If d_1 is a quasi-pseudo-metric on X, then $B_{d_1}(x,k_1) = \{y : d_1(x,y) < k_1\}$, the open d_1 -sphere with centre x and radius $k_1 > 0$. Classically, the collection of all d_1 spheres forms a basis for a topology, the obtained topology be denoted by τ_1 and is called the quasi-pseudo-metric topology of d_1 . Similarly we get a topology τ_2 for X, due to the quasi-pseudo-metric d_2 .

Definition 2.4 [2]: A non-empty set X equipped with two arbitrary topologies τ_1 and τ_2 is called a bitopological space and is denoted by (X, τ_1, τ_2) .

Definition 2.5 [2]: Let d_1 and d_2 be conjugate, quasi-pseudo-metrics on X and define a function $d_3: X \times X \to \mathbb{R}^+ \cup \{0\}$ by

$$d_3(x,y) = \frac{[2d_1(y,x) + d_2(y,x)]}{3}, \forall x, y \in X$$

Then

(i)
$$d_3(x,z) = \frac{[2d_1(z,x) + d_2(z,x)]}{3} = 0$$

for all $x \in X$

(ii)
$$d_3(x,z) = \frac{\left[2d_1(z,x) + d_2(z,x)\right]}{3}$$

$$\leq \frac{\left[2(d_1(z,y)+d_1(y,x))+(d_2(z,y)+d_2(y,x))\right]}{3}=d_3(x,y)+d_3(y,z) \text{ for all } x,y,z\in X.$$

Therefore, d_3 is a quasi-pseudo-metric on X which is called a Mean Conjugate(simply write M.C) of d_1, d_2 and d_1 . For each i=1,2,3, the quasi pseudo-metric d_i gives a topology τ_i whose base is $\{B_{di}(x,k_i)\}$, where $\{B_{di}(x,k_i)=\{y:d_i(x,y)< k_i\}$. Thus we define a non-empty set X equipped with three arbitrary topologies τ_1,τ_2 , and τ_3 is called a tritopological space and is denoted by $(X,3\tau)$ or (X,τ_1,τ_2,τ_3) . Generally, let $d_1,d_2,\cdots d_{N-1}$ be quasi-pseudo-metrics on X, d_1 and d_2 be conjugate and $d_3,d_4,\cdots d_{N-1}$ be M.C of d_1,d_2 and d_1 ; d_1,d_2,d_3 and d_1 ; $d_1,d_2,\cdots d_{N-2}$ and d_1 , respectively. Define a function $d_N:X\times X\to \mathbb{R}^+\cup\{0\}$ by

$$d_{N}(x,y) = \frac{\left[d_{1}(y,x) + \sum_{i=1}^{N-1} d_{i}(y,x)\right]}{N}$$

 $\forall x, y \in X$. We can easily verify that d_N is a quasi-pseudo-metric on X. Also we note that for each N, $d_N(x,y) \neq d_N(y,x)$, for all $x,y \in X$ and d_N is called a Mean Conjugate(simply write M.C) of $d_1, d_2, \cdots, d_{N-1}$ and d_1 . For each $i=1,2,\cdots,N$, the quasi-pseudo metric d_i gives a topology τ_i whose basis is $\{B_{di}(x,k_i)\}$, where $B_{di}(x,k_i)$ = $\{y: d_i(x,y) < k_i\}$. Thus we define a non-empty set equipped with N-arbitrary topologies $\tau_1,\tau_2,\cdots,\tau_N$ is called a N-topological space and is denoted by $(X,N\tau)$ or $(X,\tau_1,\tau_2,\cdots,\tau_N)$.

Definition 2.6 [2]: Let X be a non-empty set, $\tau_1, \tau_2, ..., \tau_N$ be N-arbitrary topologies on X and let the collection $N\tau$ be defined by $N\tau = \{S \subseteq X : S = (\bigcup_{i=1}^N A_i) \cup (\bigcap_{i=1}^N B_i), A_i, B_i \in \tau_i\}$ satisfying the following axioms: (i) $X, \emptyset \in N\tau$

- (ii) $\bigcup_{i=1}^{\infty} S_i \in N\tau \forall S_i \in N\tau$
- (iii) $\cap_{i=1}^n S_i \in N\tau \forall S_i \in N\tau$

The pair $(X,N\tau)$ is called a N-topological space.

3. Generalized N **– Topology:** In this section, we introduce the notion of generalized N-topological spaces.

Definition 3.1 Let X be a non-empty set. Let $\mu_i, \mu_2, ..., \mu_N$ be N arbitrary generalized topologies defined on X and the collection N_μ be defined by $N_\mu = \{C \subseteq X : C = (\bigcup_{i=1}^N A_i) \cup (\bigcap_{i=1}^N B_i), A_i, B_i \in \mu_i\}$ satisfying the following axioms:

(i) $\emptyset \in N\mu$

(ii)
$$\bigcup_{i=1}^{\infty} C_i \in N \mu \forall C_i \in N \mu$$

The pair $(X,N\mu)$ is called a generalized N-topological space and the elements in the collection $N\mu$ are called $N\mu$ - open sets on X. A subset A of X is said to be $N\mu$ - closed if its complement is $N\mu$ -open. The set of all $N\mu$ -open sets and $N\mu$ -closed sets are, respectively, denoted by $N\mu O(X)$ and $N\mu C(X)$.

Example 3.2: Let $X = \{a,b,c,d,e\}, \mu_1O(X) = \{\emptyset,\{a,b\},\{b,c\}\}, \mu_2O(X) = \{\emptyset,\{d\},\{c,d\}\} \text{ and } \mu_3O(X) = \{\emptyset,\{c\},\{a,c\}\}\}.$ Then $3\mu O(X) = \{\emptyset,\{a\},\{c\},\{d\},\{a,c\},\{b,c\},\{c,d\},\{a,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\},\{a,b,c,d\}\}.$ (X,3 μ) is a generalized tri-topological space.

Theorem 3.3: Let $(N\mu)_1$ and $(N\mu)_2$ be two generalized N-topological spaces on X. Then $(N\mu)_1 \cap (N\mu)_2$ is also a generalized N-topology on X.

Proof:

- 1. $\emptyset \in (N\mu)_1 \cap (N\mu)_2$
- 2. Let $\{C_i\}_{i\in I}\in (N\mu)_1\cap (N\mu)_2$. Then

$$C_i \in (N\mu)_1$$
 and $C_i \in (N\mu)_2 \ \forall i \in I$ Therefore $\bigcup_{i \in I} C_i \in (N\mu)_1$ and $\bigcup_{i \in I} C_i \in (N\mu)_2$ and hence $\bigcup_{i \in I} C_i \in (N\mu)_1 \cap (N\mu)_2$

Thus intersection of two generalized

N-topologies is again a generalized *N*-topology.

Remark 3.4: Union of two generalized

N-topologies need not be a generalized *N*-topology.

Example 3.5: Let $X = \{a,b,c,d\}$, $\mu_1O(X) = \{\emptyset,\{a,b\},\{b,c\},\{a,b,c\}\}$ and $\mu_2O(X) = \{\emptyset,\{c\},\{a,c\}\}$. Then $2\mu O(X) = \{\emptyset,\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$.

Now for the generalised topologies $\mu_1'O(X) = \{\emptyset, \{a\}, \{d\}, \{a,d\}\} \text{ and } \mu_2'O(X) = \{\emptyset, \{a,b\}, \{b,c\}, \{a,b,c\}\} \}$, we have $2\mu'O(X) = \{\emptyset, \{a\}, \{d\}, \{a,d\}, \{a,b\}, \{b,c\}, \{a,b,d\}, \{b,c,d\}, X\}$. 2μ and $2\mu'$ are generalized bitopological spaces on X. But $2\mu \cup 2\mu' = \{\emptyset, \{a\}, \{c\}, \{d\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, X\}$ which is not a generalized bitopology on X, since $\{c\}, \{d\} \in 2\mu$, but $\{c\} \cup \{d\} \notin 2\mu$.

Definition 3.6: The $N-\mu$ interior of a subset S of X denoted by $N\mu$ -int(S) is the union of all $N\mu$ open sets contained in S. The $N-\mu$ closure of S denoted by $N\mu$ -cl(S) is the intersection of all $N\mu$ closed sets containing S.

Theorem 3.7: Let $(X,N\mu)$ be a generalized N-topological space and let $A,B \subseteq X$. Then

- 1. $N\mu$ -int(A) is the largest $N\mu$ open set contained in A.
- 2. $N\mu$ -cl(S) is the smallest $N\mu$ closed set containing A.
- 3. $N\mu$ -int(\emptyset) = \emptyset
- 4. $N\mu$ -cl(X) = X
- 5. $A \subseteq B \Rightarrow N\mu int(A) \subseteq N\mu int(B)$
- 6. $A \subseteq B \Rightarrow N\mu cl(A) \subseteq N\mu cl(B)$
- 7. $N\mu$ -int $(A \cup B) \supseteq N\mu$ -int $(A) \cup N\mu$ -int(B)
- 8. $N\mu$ - $cl(A \cup B) \supseteq N\mu$ - $int(A) \cup N\mu$ -int(B)
- 9. $N\mu$ -int $(A \cap B) \subseteq N\mu$ -int $(A) \cap N\mu$ -int(B)
- 10. $N\mu$ - $cl(A \cap B) \subseteq N\mu$ - $cl(A) \cap N\mu$ -int(B)

Proof

- 1. By definition, $N\mu$ -int(A) is a $N\mu$ open set contained in A. Let W be a $N\mu$ open set contained in A. Then $W \subseteq \bigcup \{C: C \text{ is an } N\mu \text{ open set contained in } A\} = N\mu$ -int(A). Therefore $N\mu$ -int(A) is the largest $N\mu$ open set contained in A.
- 2. Proof is similar to (i).
- 3. Proof is obvious.
- 4. Proof is obvious.
- 5. Let $A \subseteq B$. Then every $N\mu$ open set contained in A is also an $N\mu$ open set contained in B. Therefore $\cup \{C : C \text{ is a } N\mu \text{ open set contained in } A\} \subseteq \cup \{D : D \text{ is a } N\mu \text{ open set contained in } B\}$ Hence $N\mu$ -int(A) $\subseteq N\mu$ -int(B)
- 6. Proof is similar to (v).
- 7. We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$

Therefore using $(v)N\mu$ -int $(A)\subseteq N\mu$ -int $(A\cup B)$.

Similarly $N\mu$ -int(B)⊆ $N\mu$ -int($A\cup B$).

Therefore $N\mu$ -int(A) $\cup N\mu$ -int(B) $\subseteq N\mu$ -int($A\cup B$).

- 8. Proof is similar to (vii).
- 9. We know that $A \supseteq A \cap B$ and $B \supseteq A \cap B$.

Therefore using (v) $N\mu$ -int(A) $\supseteq N\mu$ -int($A\cap B$).

Similarly $N\mu$ -int(B) $\supseteq N\mu$ -int($A \cap B$).

Therefore $N\mu$ -int(A) $\cap N\mu$ -int(B) $\supseteq N\mu$ -int($A\cap B$).

10. Proof is similar to (ix).

Remark 3.8: Though in classical *N*-topology, equality hold for (viii) and (ix) of theorem 3.7, it need not hold in a generalised *N*- topological space.

Example 3.9: In example 3.2, let $A=\{a,b\}$ and $B=\{b,c\}$. Then $A\cap B=\{b\}$, $3\mu-int(A\cap B)=\emptyset$. But $3\mu-int(A)=\{a,b\}$, $3\mu-int(B)=\{b,c\}$ and hence $3\mu-int(A)\cap 3\mu-int(B)=\{b\}$. Thus equality doesn't hold for (viii) of theorem 3.7. Again if $C=\{c,d,e\}$, $D=\{a,d,e\}$. Then $3\mu-cl(C)=C$, $3\mu-cl(D)=D$ and hence $3\mu-cl(C)\cup 3\mu-cl(D)=\{a,c,d,e\}$. But $C\cup D=\{a,c,d,e\}$ and $3\mu-cl(C\cup D)=X$. Thus equality doesn't hold for (ix) of theorem 3.7.

Theorem 3.10: Let $(X, N\mu)$ be a generalized N-topological space and $A \subseteq X$. Then

- (i) $N\mu$ -int(A) = X- $N\mu$ -cl(X-A).
- (ii) $N\mu$ - $cl(A) = X-N\mu$ -int(X-A).

Proof:

- 1. Let $x \in N\mu$ -int(A). Then $x \in G$ for some $N\mu$ -open set G contained in A. That is $x \notin X$ -G, where X-G is a $N\mu$ closed set containing X-A.
 - Therefore $x \notin N\mu cl(X-A)$ which implies $x \in X-N\mu cl(X-A)$.
 - Similarly, if $x \in X-N\mu cl(X-A)$ then $x \notin N\mu cl(X-A)$. Hence \exists a $N\mu$ closed set F containing X-A such that $x \notin F$. Thus $x \in X-F$ which is a $N\mu$ open set contained in A. Hence $x \in N\mu int(A)$.
- 2. $x \in N\mu cl(A) \iff x \in F \ \forall \ N\mu \ closed \ set \ F \subseteq A \iff x \notin X F \ \forall \ N\mu \ open \ set \ X F \supseteq X A \iff x \notin N\mu int(X A) \iff x \in X N\mu int(A).$

Theorem 3.11: Let $(X, N\mu)$ be a generalized N-topological space and $A \subseteq X$. Then

- 1. $N\mu$ -int(A) $\supseteq \mu_1$ int(A) $\cup \mu_2$ int(A) $\cup \dots \cup \mu_N$ int(A).
- 2. $N\mu$ - $cl(A) \subseteq \mu_1 cl(A) \cap \mu_2 cl(A) \cap \cdots \cap \mu_N cl(A)$.

Proof:

- 1. Let $x \in \mu_i int(A) \cup \mu_2 int(A) \cup \cdots \cup \mu_N int(A)$. Then $x \in \mu_i int(A)$ for some i. So, there exists a μ_i open set G containing x such that $G \subseteq A$. But every μ_i open set is also a $N\mu$ open set $\forall i$. Hence G is a $N\mu$ open set containing x such that $G \subseteq A$. Therefore $x \in N\mu int(A)$. Hence $N\mu int(A) \cup \mu_2 int(A) \cup \cdots \cup \mu_N int(A)$.
- 2. Since (i) is true for every subset *A* of *X* replacing *A* by *X*–*A* we get, $N\mu$ -int(*X*–*A*) $\supseteq \mu_1$ int(*X*–*A*) $\cup \mu_2$ int (*X*–*A*) $\cup \dots \cup \mu_N$ int(*X*–*A*).

Taking complements on both sides and applying demorgan's law and theorem 3.10, we get the desired result.

Remark 3.12: Equality need not hold in theorem 3.11.

Example 3.13: In example 3.2, let $A=\{a,d\}$. Then $\mu_1 int(A)=\emptyset$, $\mu_2 int(A)=\{d\}$, $\mu_3 int(A)=\emptyset$ and hence $\mu_1 int(A) \cup \mu_2 int(A) \cup \mu_3 int(A)=\{d\}$. But $3\mu int(A)=\{a,d\}$. Thus equality doesn't hold for (i) of theorem 3.11. Again if $B=\{b,c,e\}$, then $\mu_1 cl(B)=X,\mu_2 cl(B)=\{a,b,c,e\}$, $\mu_3 cl(B)=X$ and hence $\mu_1 cl(B)\cap \mu_2 cl(B)\cap \mu_3 cl(B)=\{a,b,c,e\}$. But $3\mu cl(B)=\{b,c,e\}$. Hence equality doesn't hold for (ii) of theorem 3.11.

Definition 3.14: Let $f:(X,N\mu) \to (Y,N\nu)$ be a function where X and Y are two generalized N-topological spaces. f is called N^*g -continuous if for every $N\nu$ -open set U in $Y,f^{-1}(U)$ is a $N\mu$ -open set in X.

Theorem 3.15: Let $f:(X,N\mu) \to (Y,N\nu)$ be a function where X and Y are two N-generalized topological spaces. Then the following are equivalent.

- 1. f is N*q-continuous.
- 2. For every Nv-closed set F in Y, $f^{-1}(F)$ is a N μ -closed set in X.
- 3. For every subset *A* of *X*, $f(N\mu\text{-}cl(A)) \subseteq N\nu\text{-}cl(f(A))$.
- 4. For every subset *B* of *Y*, $N\mu$ - $cl(f^{-1}(B)) \subseteq f^{-1}(N\nu$ -cl(B)).
- 5. For every subset *B* of *Y*, $f^{-1}(Nv\text{-}int(B)) \subseteq N\mu\text{-}int(f^{-1}(B))$.

Proof (i) \Rightarrow (ii) Let f be N^*g -continuous. Then by definition, $f^{-1}(U)$ is a $N\mu$ -open set in X, for every $N\nu$ -open set U in Y. Let F be a $N\nu$ -closed set in Y. Then F^c is an $N\nu$ -open set in Y. Hence $f^{-1}(F^c)$ is $N\mu$ -open in X. But $f^{-1}(F^c) = (f^{-1}(F))^c$. Therefore $(f^{-1}(F))^c$ is $N\mu$ -open in X. So $f^{-1}(F)$ is $N\mu$ -closed in X.

- (ii) \Rightarrow (iii) Let us assume that for every Nv-closed set F in Y, $f^{-1}(F)$ is a $N\mu$ -closed set in X. Let A be a subset of X. Now Nv-cl(f(A)) is a Nv-closed subset of Y. Hence by assumption, $f^{-1}(Nv-cl(f(A)))$ is a $N\mu$ -closed subset of X. Also it contains A. But $N\mu$ -cl(A) is the smallest $N\mu$ -closed set containing A. Therefore $N\mu$ -cl(A) $\subseteq f^{-1}(Nv-cl(f(A)))$. Hence $f(N\mu$ - $cl(A))\subseteq Nv-cl(f(A))$.
- (iii) ⇒(iv) Let us assume that for every subset A of X, $f(N\mu-cl(A)) \subseteq N\nu-cl(f(A))$. Let B be a subset of Y. Then $f^{-1}(B)$ is a subset of X. Replacing A by $f^{-1}(B)$ in (iii), we get $f(N\mu-cl(f^{-1}(B))) \subseteq N\nu-cl(B)$. Hence $N\mu-cl(f^{-1}(B)) \subseteq f^{-1}(N\nu-cl(B))$.
- (iv)⇒(v) Let *B* be a subset of *Y*. Assume (iv) is true. Replacing *B* by B^c in (iv), we get, $N\mu$ - $cl(f^{-1}(B^c))\subseteq f^{-1}(N\nu$ - $cl(B^c)$). Taking complement on both side we get, $X-N\mu$ - $cl(f^{-1}(B^c))\supseteq X-f^{-1}(N\nu$ - $cl(B^c)$) which implies $X-N\mu$ - $cl(f^{-1}(B)^c)\supseteq f^{-1}(Y-N\nu$ - $cl(B^c)$). Using theorem 3.10, we get $N\mu$ - $int(f^{-1}(B))\supseteq f^{-1}(N\nu$ -int(B)).
- $(\mathbf{v}) \Rightarrow (\mathbf{i})$ Assume (\mathbf{v}) is true. Let *U* be a

Nv-open set in Y. Using (v), we get

 $f^{-1}(N\nu - int(U)) \subseteq N\mu - int(f^{-1}(U))$. Since U is $N\nu$ -open, $f^{-1}(U) \subseteq N\mu - int(f^{-1}(U))$. But always $f^{-1}(U) \supseteq N\mu - int(f^{-1}(U))$. Therefore we get $f^{-1}(U) = N\mu - int(f^{-1}(U))$. Hence $f^{-1}(U)$ is $N\mu$ -open in X. Therefore f is N^*g -continuous.

4. Conclusion: In this paper, we have introduced a new structure of generalized N-topology on a nonempty set. We have defined $N\mu$ -interior, $N\mu$ -closure and discussed some of their properties. We have also defined N*g-continuous functions between generalized-N-topological spaces and established its characterizations. In future, this study can be extended to apply other concepts of topology in generalized N-topology.

References:

- 1. Csaszar. "Generalized topology, generalized continuity." Acta Math. Hungar. 96(2002): 351-357.
- 2. Lellis Thivagar. M, Ramesh. V, Arockiya Dasan. M. "On new structure of *N* topology." Cogent Mathematics. Vol.3 (1204104) (2016): 1-10.
- 3. X. Ge, J. Gong, I. Reilly. "Some properties of mappings on generalized topological spaces." Math.GN(2015): 1-8.
- 4. R. Khayeri, R.Mohamadian. "On Base for Generalized topological spaces." Int. J. Contemp. Math. Sciences. Vol. 6(2011)no. 48: 2377-2383.
- 5. V.Renukadevi, P.Vimaladevi. "Note on generalized topological spaces with hereditary classes." Bol. Soc. Paran. Mat.(3s.) v.32 1(2014):89-97.
