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Abstract: Heat transfer problems often require extensive parametric studies to understand the influence of 
some variables on the solution in order to choose the right set of variables and to answer some “what-if” 
questions. This is an iterative process that is extremely tedious and time-consuming if done by hand. 
Computers and numerical methods are ideally suited for such calculations, and a wide range of related 
problems can be solved by minor modifications in the code or input variables. Today it is almost unthinkable 
to perform any significant optimization studies in engineering without the power and flexibility of computers 
and numerical methods.  
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Introduction: Numerical solution of heat transfer is 
a broad term which denotes the procedures for the 
solution. The objective in any heat transfer 
calculation is the determination of the rate of heat 
transfer to or from some surface or object. In 
conduction problems, this requires finding the 
temperature gradient in the material at its surface. In 
convection problems, the temperature gradient is 
required. [1]. In a fluid flowing over a surface is 
needed to find the heat flux at that surface. In both 
cases, the determination of the complete temperature 
distribution in the region of interest is needed as a 
first step. In convection one must also find the 
velocity distribution. Thus, a full solution of the 
energy equation and perhaps also the equations of 
motion is required. These are partial differential 
equations, possibly coupled. There are two methods 
to solve the problems related to heat transfer. 
In the first, the equations are simplified for example, 
by linearization, or by neglecting terms considered 
sufficiently small, or by the assumption of constant 
properties, or by some other technique until an 
equation or system of equations is obtained for which 
an analytical solution can be found. It could be said 
that an exact analytical solution will be obtained for 
an approximate problem. The solution will, to some 
extent, be in error, and it will not normally be 
possible to estimate the magnitude of this error 
without recourse to external information such as an 
experimental result.  
The second approach is to use a numerical method. 
[2]. In this, the continuous solution region is, 
replaced by a net or grid of lines and elements. The 
solution variables temperature, velocity, etc. are not 
obtained at all of the infinite number of points in the 
solution region, but only at the finite number of 
nodes of the grid, or at points within the finite 
number of elements.[3]. The differential equations 
are replaced by set of linear (or, rarely, nonlinear) 
algebraic equations, which must and can be solved on 
a computer.  

Research Methodology: This is a review paper 
based on the numerical solution techniques of heat 
transfer. Due to the increasing complexities 
encountered in the development of modern 
technology, analytical solutions usually are not 
available. For these problems, numerical solutions 
obtained using high-speed computer are very use full, 
especially when the geometry of the object of interest 
is irregular, of the boundary conditions are nonlinear. 
In heat transfer analysis, some bodies are considered 
as a ‘lump’. In a ‘lump’ interior temperature remains 
constant during heat transfer. The temperature of 
such bodies can be taken as a function of time only. 
Freezing of food, cooking of food, boiling of eggs are 
some examples of heat transfer problems in daily life. 
The growth rate of microorganism in a food product 
in environmental temperature is another example of 
heat transfer. [4]. In numerical analysis, three 
different approaches are commonly used; the finite 
difference, the finite volume and the finite element 
methods. 
Discretization: Discretization is a cornerstone of 
numerical techniques i.e. numerical solution. An 
analytical solution to a partial differential equation 
gives us the value of f  as a function of the 
independent variables (x_y,z,t). On the other hand, 
the numerical solution provides us the value of  f  at a 
discrete number of points in the domain. These 
points are called grid points, or sometimes as nodes or 
cell centroids, depending on the method. The process 
of converting our governing transport equation into a 
set of equations for the discrete values of  f  is called 
the discretization process and the specific methods 
employed to bring about this conversion are called 
discretization method . 
The conversion of a differential equation into a set of 
discrete algebraic equations requires the 
discretization of space. This is accomplished by 
means of mesh generation. Mesh generation divides 
the domain of our interest into elements or cells, and 
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associates with each element or cell one or more 
discrete values of  f  .  
Since our aim is to get an answer to the original 
differential equation, it is appropriate to check 
whether our algebraic equation set really gives us 
this. When the number of grid points is small, the 
departure of the discrete solution from the exact 
solution is expected to be large. A well-behaved 
numerical scheme will tend to the exact solution as 
the number of grid points is increased. The rate at 
which it tends to the exact solution depends on the 
type of profile assumptions made in obtaining the 
discretization. No matter what discretization method 
is employed, all well-behaved discretization methods 
should tend to the exact solution when a large 
enough number of grid points is employed. 
Discretization Error: The discretization error 
involved in numerical methods is due to replacing the 
derivatives by differences in each step, or the actual 
temperature distribution between two adjacent nodes 
by a straight line segment. 
Consider the variation of the solution of a transient 
heat transfer problem with time at a specified nodal 
point [6]. Both the numerical and actual (exact) 
solutions coincide at the beginning of the first time 
step, as expected. But the numerical solution deviates 
from the exact solution as the time t increases. The 
difference between the two solutions at D  is due 
to the approximation at the first time step only and is 
called the local discretization error. We can expect 
the situation to get worse with each step since the 
second step uses the erroneous result of the first step 
as its starting point and adds a second local 
discretization error on top of it. The accumulation of 
the local discretization errors continues with the 
increasing number of time steps, and the total 
discretization error at any step is called the global or 
accumulated discretization error. Taylor series 
expansion represent the error involved in the finite 
difference approximation. Taylor series expansion of 
the temperature at a specified nodal point m about 
time ti is given as 

             (1) 

 For a sufficiently small time step, these terms decay 
rapidly as the order of derivative increases, and their 
contributions become smaller and smaller. The local 
discretization error is the formulation error 
associated with a single step and gives an idea about 
the accuracy of the method used. However, the 
solution results obtained at every step except the first 
one involve the accumulated error up to that point, 
and the local error alone does not have much 
significance. Thus we conclude that the local 
discretization error is proportional to the square of 
the step size while the global discretization error 

is proportional to the step size  itself. Therefore 
smaller the mesh size smaller will be the error. [5]. 
Halving the step size will reduce the global 
discretization error by half. The discretizatin error 
approaches zero as the difference quantities such as 

 and  approach the differential quantities such as 
 and . 

Round-off error: If we had a computer that could 
retain an infinite number of digits for all numbers, 
the difference between the exact solution and the 
approximate (numerical) solution at any point would 
entirely be due to discretization error. But in every 
computer (or calculator) we represent numbers using 
a finite number of significant digits. The default value 
of the number of significant digits for many 
computers is 7. Which is referred to as single 
precision. But the user can perform the calculations 
using 15 significant digits for the numbers. 
Performing calculations in double precision will 
require more computer memory and a longer 
execution time. In single precision mode with seven 
significant digits, a computer registers the number 
12345.666666 as 12345.67 or 12345.66. depending on 
the method of rounding the computer uses. In the 
first case. The excess digits are said to be rounded to 
the closest integer. Whereas in the second case they 
are said to be chopped off. Therefore, the numbers 

 and  are 
equivalent for a computer that performs calculations 
using seven significant digits. Such a computer would 

give  instead of the true value . 
The error due to retaining a limited number of digits 
during calculations is called the round-off error. This 
error is random in nature and there is no easy and 
systematic way of predicting it.  
Round-off error depends on  
1. The number of calculations.  
2. The method of rounding off.  
3. The type of computer.  
4. The sequence of calculations. 
Controlling the Error in Numerical Methods: The 
total error in any result obtained by a numerical 
method is the sum of the discretization error, which 
decreases with decreasing step size, and the round-off 

error. Which increases with decreasing step size. 
Therefore, decreasing the step size too much in order 
to get more accurate results may actually backfire and 
give less accurate results because of a faster increase 
in the round-off error. We should be careful not to let 
round-off error get out of control by avoiding a large 
number of computations with very small numbers.  
In practice, we do not know the exact solution of the 
problem, and thus we cannot determine the 
magnitude of the error involved in the numerical 
method. Knowing that the global discretization error 
is proportional to the step size is not much help 
either since there is no easy way of determining the 
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value of the proportionally constant. Besides, the 
global discretization error alone is meaningless 
without a true estimate of the round-off error. 
Therefore, we recommend the following practical 
procedures to assess the accuracy of the results 
obtained by a numerical method. 

Start the calculations with a reasonable mesh size Dx 

(and time step size Dt for transient problems) based 
on experience. Then repeat the calculations using a 

mesh size of 
D

. If the results obtained by halving the 

mesh size do not differ significantly from the results 
obtained with the full mesh size, we conclude that 
the discretization error is at an acceptable level. But if 
the difference is larger than we can accept, then we 

have to repeat the calculations using a mesh size   

or even a smaller one at regions of high temperature 
gradients. We continue in this manner until halving 
the mesh size does not cause discretization error is 
reduced to an acceptable level. 
Repeat the calculations using double precision 
holding the mesh size constant. If the changes are not 
significant, we conclude that the round-off error is 
not a problem. But if the changes are too large to 
accept, then we may try to reduce the total number of 
calculations by increasing the mesh size or changing 
the order of computations. But if the increased mesh 
size gives unacceptable discretization errors, then we 
may have to find a reasonable compromise. 
It should always be kept in mind that the results 
obtained by any numerical method may not reflect 
any trouble spots in certain problems that require 
special consideration such as hot spots or areas of 
high temperature gradients. The results that seem 
quite reasonable overall may be in considerable error 
at certain locations. This is another reason for always 
repeating the calculations at least twice with different 
mesh sizes before accepting them as the solution of 
the problem. Most commercial software packages 
have built-in routines that vary the mesh size as 
necessary to obtain highly accurate solutions.  
Consider a function T(x) and its derivatives to be 
single-valued, finite, and continuous with respect to 

x. The Taylor series expansion of T(x + D(x)) about 
T(x) may be written as 

D D D

D  +…     (2) 

D D D

D  +…     (3) 

Adding Eqs. (2) and (3) 

D D D

D       (4) 
Where the last term in Eq. (4) represents terms in the 
fourth and higher powers of D . Equation (4) may be 
written as  

D                   (5) 

The second order  derivative of   in finite 
difference method is given by 

             (6) 

Comparing Eq. (5) to Eq.(6), the finite difference 

approximation of has a truncation error of the 

order of magnitude of D .    
If we subtract Eq. (3) from Eq. (2), and rearrange, We 
obtain 

D          (7) 

The first order derivative of   in finite difference 
method is given by 

                    (8) 

Comparing Eq. (7) to Eq. (8), the finite difference 

approximation of has a truncation error of the 

order of magnitude of D . 
The other two approximations for the first derivative 
of T with respect to x have truncation errors of the 
order of magnitude of D . Thus, the central difference 
formulation is more precise than the other two. 
Conclusion: The truncation errors are inherent in 
the finite difference method and cannot be 
eliminated. Truncation error refers to the error in a 
method, which occurs because some series (finite or 
infinite) is truncated to a fewer number of terms. 
Such errors are essentially algorithmic errors and we 
can predict the extent of the error that will occur in 
the method.  The errors may be reduced by selecting 
a finer grid. In other words, smaller increments for 
space and time will reduce the truncation errors.  
Numerical solutions are carried out to a finite 
number of significant figures; the numbers are 
rounded-off and thus, round-off errors are 
introduced. Round-off errors compound, and this 
may result in a large cumulative error. It is difficult to 
estimate the order of magnitude of the cumulative 
round-off errors. The use of smaller increments in 
space and time increases the accumulation of round-
off errors, even though they lead to less truncation 
errors.  
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