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Abstract: In this paper, we analyze a ratio-dependent plant-herbivore model with strong Allee effect on 
the plant by making a parametric analysis of the stability properties of the dynamics of the system in 
which the functional response is a function of the ratio of plant to herbivore abundance. In this model, 
the functional response is undefined at the origin. All the feasible equilibria of the system were obtained 
and the conditions for the existence of the interior equilibrium were determined.   
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Introduction: Over the past two decades, intensive research in ecology, evolutionary biology and 
resource management have been focused on plant-herbivore interactions. The dynamical relationship 
between plant and herbivore has long been and will continue to be one of the dominant themes in 
ecology due to its universal existence and importance [3], [7]. The dynamical problems involved with 
mathematical modeling of plant-herbivore systems may appear to be simple at first sight; however, the 
detailed analysis of these model systems often leads to very complicated as well as challenging problems. 
The most important part of modeling population ecosystem is to make sure that the concerned 
mathematical model can exhibit the well known system behaviors for the system. Dynamical modeling 
of ecological systems is an evolving process frequently, a better understanding of the plausible models 
and the exposed discrepancies can be done through systematic mathematical approaches which in turn 
lead to the necessary modifications. 
 
In this paper, our aim is to build a better understanding of how Allee effect affects the dynamic behavior 
of plant-herbivore interactions. Allee effects occur in small or sparse populations and, although rarely 
detected, are widely believed to be common in nature [1], [2]. Growth of populations subject to Allee 
effects is reduced at low density [4]–[11]. The originator was Warder Clyde Allee. It is a positive 
association between absolute average individual fitness and population size over some finite interval. 
Such a positive association may (but does not necessarily) give rise to a critical population size below 
which the population cannot persist. Allee effects that cause critical population sizes are called strong, 
while Allee effects that do not result in critical sizes are called weak. 
 

Mathematical Model: We consider a plant-herbivore model where the plant growth rate is subject to 
an Allee effect and the functional response of herbivores consuming the plants is ratio-dependent. The 
species interactions are described by the following system of ordinary differential equations: 

 

where  represent the populations, at time , of plant and herbivore respectively;  is 

the functional response of herbivore which is ratio-dependent;  is the herbivore efficiency rate;  is the 
herbivore death rate. The function  represents the average plant rate of growth in the absence of 
herbivore. In this paper, we assume Allee dynamics for the plant population. In case of a strong Allee 
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effect we require that the per capita growth rate should be negative near zero:  The growth 
function considering Allee effect is expressed by:  

            

where  denotes the intrinsic per capita growth rate of the population,  is the carrying capacity. The 
parameter  has the meaning of the plant survival threshold for the strong Allee effect 

 Thus at small species densities  the plant growth rate becomes negative since the 
death rate is larger than the birth rate. In case of a weak Allee effect, the value of is negative and it 
should satisfy the condition . If  then the equation for plant growth rate is 
equivalent to the logistic equation. We consider the functional response of herbivore to be ratio-
dependent and given by   

 

Where  represents the attack-rate of herbivore and  is the handling time of single plant by herbivore. 
With functions (2) and (3), model (1) becomes 

 

with the initial conditions      
In order to reduce the number of parameters in the model we shall introduce the dimensionless 
variables given by 

,  and  

 

where ,   and  Modelling a strong Allee effect implies 
 whereas a weak Allee effect requires  Model (5) now contains only four 

parameters (against seven in the original equations). The parameter  represents the death rate of the 
re-defined herbivore  the parameter  is the maximum plant death rate due to predation for an 
infinite number of herbivores, it is known as the consumption ability;   is the maximum herbivore 
growth rate for an infinite number of plant, it is called the herbivore growing ability. 
System (5) is analytical at all points in the  plane except at the axes , but the origin 
is a removable singularity. Extending the domain to the first quadrant  and then 
applying the time rescaling  we obtain the system 

 

The equilibrium solutions are determined analytically by setting it is easy to verify that this 

system (6) has five equilibrium points which are   
and ) where 

 ;  

  

 
Positivity and Boundedness: Positivity and boundedness of a model guarantee that the model is 
biologically well behaved. It is easy to notice that the functions on the right side of each equation in 
system (5) are continuously differentiable in  Therefore the solutions of (5) with a positive initial 
condition exists and is unique. For positivity of the system (5), we have the following theorem. 
 
Theorem: 1: The positive quadrant is invariant for system (5). 
Proof: To prove that  is an invariant set. 
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We can write from equations in (5), 

                   

 

This shows that  and  whenever  and  Hence all solutions remain 
within the first quadrant of the plane starting from an interior point of it. Further we can easily 
establish that solution trajectories starting from  remain within the positive axis at all future 
times and similar result holds for trajectories starting from a point on the positive axis.  
Therefore  is an invariant set 
 
Theorem 2: If then  

Proof: Consider 

  

Case A: First we consider  and our claim is  for all  
If possible, assume that our claim is not true. Then it is possible to find two positive real numbers  and 

 such that  and  for all . Then for all we have from the 
first equation of (5), 

  

Where  

 

                           

 

 , [Since 

, we have   

Therefore   
Which contradicts to the assumption that  for all   Hence  for all  
Case B: Now we consider we claim that  If possible, assume that our claim 
is not true. Then 

 

                 Since  for  and there is no equilibrium point in the region 

 
Hence combining case A & case B, we can say that any positive solution satisfies  for 
all  Hence   
The following theorem ensures the boundedness of the system (5). 
Theorem 3: All the solutions of the system (5) with the positive initial condition are uniformly 
bounded within a region W, where  

W  and    

Proof: Let us consider the relation,  

 

Differentiating  with respect to t and using (5) we get 

        

                       

Let  then we have 
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From the above expression we get the following result, 

 

Thus as , this ensures that the system (5) is dissipative with the 

asymptotic bound   This asymptotic bound for the function  ensures the 

existence of compact neighbourhood W which in turn is a proper subset of  and consequently for 
sufficiently large initial conditions  the solution of the system of equations (5) will be always 
within the set W    
 

Stability Analysis: The local stability analysis of the equilibrium points can be done based upon the 
standard linearization technique and using the Jacobian matrix. The Jacobian matrix for the model 
system (6) at any point  takes the following form  

  where 

;   
  

     
 
Proposition 1: The stability of the Allee threshold equilibrium  for  is as follows; 
a) an unstable node if , or 
b) a saddle point if   

The Jacobian matrix evaluated at  is     

which gives the eigenvalues  
l  and  

l    

Therefore, the Allee threshold equilibrium point is a saddle point if   and is an unstable node 
if  
 

Proposition 2: 

The stability of the carrying capacity equilibrium  for  is as follows;  
c) a saddle point if , or 
d) a stable node if   

The Jacobian matrix evaluated at  is given by  which gives the 

eigenvalues  

l  and  l     

Therefore, the carrying capacity equilibrium point is a saddle point if   and is a stable node if .   
 
Proposition 3: 

The Jacobian matrix at the origin is a zero matrix. So the system (6) can be reduced to the following 
homogeneous system 

 

(Neglecting the terms of order higher than two)  Now we have to study the behavior of the system (7) by 
the following two cases. 
Case: (a) Changing the variables and by rescaling the time variable   , we get  
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This system has two equilibrium points  and . The Jacobian matrix for the model system 

(8) at the point  takes the following form  where  

; ; 
  

For the equilibrium point  the eigen values of the Jacobian matrix are  and  
Therefore, the equilibrium point  is a saddle point if  and is a stable node if 

 At  the eigenvalues of the Jacobian matrix are  and .  

Therefore, the equilibrium point  is asymptotically stable node if   and  

are negative. 
Case: (b) We now changing the variables , and by rescaling the time variable , we 
get  

 

This system has two equilibrium points  and . The Jacobian matrix for the model system 

(9) at the point  takes the following form where  

 ;  
 ;  ; 

.  
At  the eigenvalues of the Jacobian matrix are   and –δ.  
Therefore, the equilibrium point  is a saddle point if  and is a stable node if 

 
 

Proposition 4: 

If  and the discriminant  then the system (6) has two interior 

points  

in the first quadrant.  

The stability of the equilibrium point for   is as follows;  

a) a stable node if  
      Det of   and  
Trace of    
b) an unstable node if  
Det of   and  
Trace of    

The Determinant of the Jacobian matrix at  is  
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is positive when  and the Trace of the Jacobian matrix evaluated at  is equal to 

 

The sign of the trace is defined as follows; 

 

Hence the equilibrium point is  
1. a stable node if   

Det of   and  
Trace of    

2. an unstable node if 
Det of   and  
Trace of  

and also (a) if the discriminant  then the system (6) has unique 

interior point  in the first quadrant. 

(b) if the discriminant then the system (6) has no interior equilibrium 
point in the first quadrant. 
 

Conclusion: In this paper, we have considered a plant-herbivore model with ratio-dependent functional 
response and a strong Allee effect affects the growth of plant. Allee effect provides a contemporary 
research experience and also gives a better idea and understanding of ecological phenomena of real 
world. The local stability of various equilibrium points were discussed by analyzing the nature of roots 
of concerned characteristic equations of the system. Here the behaviour of ratio dependent model at the 
origin is also discussed. Since this model has difficult dynamics in the neighborhood of the point (0, 0) 
and system (5) cannot be linearized, thus we introduce an equivalent system (6) which is continuous 
extension of system (5), it is used to study the analytical behaviour of the system close to the origin and 
we have also analyzed the system mathematically and described some of its biological applications as 
well.  
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